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Outline of This Talk

• Introduction:
 BCS (Bardeen-Cooper-Schrieffer) to BEC (Bose-Einstein

condensation) crossover.

• Techniques employed:
 Semi-analytical perturbative approach.
 Semi-stochastic variational approach.
 Monte Carlo techniques.

• Examples of our trapped few-fermion studies:
 Universality throughout crossover and at unitarity.
 Energetics and structure (pair distribution function and

momentum distribution).

Graphics from 
JILA homepage.
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BCS-BEC Crossover with Cold Two-
Component Atomic Fermi Gas

aho/as 

“BCS” “BEC”
Weakly-attractive
atomic Fermi gas

Weakly-repulsive
molecular Bose 
gas

Strongly-
interacting
(unitarity)

Images (experiment): Jin group, JILA.

STABLE GAS!!!
Dilute gas:
r0 << aho, as or 
n(0)r0

3 << 1.

asas



Two-Component Equal-Mass Fermi Gas:
Four-Particle System in Free Space

Weakly-bound three- and four-body bound states are absent.
Atom-dimer s-wave scattering length aad ≈ 1.2as.
Dimer-dimer s-wave scattering length add ≈  0.6as.

Petrov, PRA 67, 010703 (R ) (2003); Petrov, Salomon,
Shlyapnikov, PRL 93, 090404 (2004).
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What is Interesting about Two-
Component Fermi Gases?
• Clean model system (no impurities).
• Tunability of interaction strength and confinement.
• Strongly-interacting regime can be reached.

• Realization of Yang-Gaudin model.
• Realization of polaron physics.
• Model for high-Tc superconductivity?
• Many other model Hamiltonian…

• Simple but non-trivial.
• Cross-disciplinary.



Relevance Beyond Atomic Physics:
Nuclear Physics.

• Universal behavior (large scattering length as):
 Nuclear: neutron-neutron as = -18fm (effective range

2.8fm). Desirable: low density neutron matter.
 Atomic: Tunability of as near Feshbach resonance.

• Three-component system:
 Nuclear: low density: nucleon = tri-quark bound state;

high density: quark color superconductor.
 Atomic: Fermi gas with three internal states.

• Efimov effect/physics:
 Nuclear: 2n-rich halo nuclei, 12C
 Atomic: 4He trimer, Cs2+Cs, K2+K, three-body collisions.

Experiment: Grimm, Inguscio,… groups.

Experiment:
Jochim,
O’Hara groups.

Experiment: Jin, Ketterle,
Hulet, Thomas,… groups.



Microscopic Many-Body Hamiltonian of
Trapped Two-Component Gas

• Angular momentum L and parity π are good quantum
numbers.

• VTB chosen conveniently:
 Perturbative treatment: Zero-range pseudo potential.
 Stochastic variational treatment: Gaussian interaction.
 Monte Carlo treatment: Square well interaction.

r
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Two s-Wave Interacting Particles in
External Spherically Harmonic Trap

3/2
7/2
11/2
15/2
19/2

Eni=(2n+3/2)hν

Eunit=(2n+1/2)hν

Eni=(2n+3/2)hν

Analytical treatment:
Busch et al., Found. of Phys. (1998).

Finite angular momentum:
Enl=(2n+l+3/2)hν

s



Three S-Wave Interacting Fermions
Under Harmonic Confinement

 

[calculated following Kestner and Duan, 
PRA 76, 033611 (2007)]:

L=0

L=1

Questions:
How to understand mess
of energy levels?
What to do with the
spectra?

ρ1

ρ2
ρ1

ρ2

Jacobi vectors:
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Including
unitarity

“Any” # of
particles

Few
particles

Roadmap: Multifaceted Approach to
Understanding System

NI Pert. theory
(hyperspherical)

Any
interaction

strength

Monte Carlo (MC)

Weak interaction

Comparison

Hyperspherical
treatment

No new length scale

Weakly-repulsive molecular
Bose gasUnitarity

Weakly-attractive
atomic Fermi gas
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Weak Interactions: First Order
Degenerate Perturbation Theory

• Cartesian coordinates (brute force approach):
 ΨNI readily constructed (product of two Slater

determinants).
 ΨNI not eigenstates of L2, Lz, π.

• Hyperspherical coordinates (smarter approach):
 CM degrees of freedom separated off.
 ΨNI constructed to be eigenstates of L2, Lz, π.

For a degenerate subspace, must diagonalize Vjk matrix:



Construction of NI Wave Function in
Hyperspherical Coordinates

Reduce deg. of freedom.
Remove CM energy spectrum.

Anti-symmetrization.

ν(λ,N) - non-integer.
Simple HO solution.

+ ECM



Energy Spectrum for N=3: Perturbative
Treatment (Weak Attraction)

LΠ=0+

LΠ=1−

LΠ=2+

E(1)≈E(0)+ΔE(1)

(diagonalize
<Ψ(0)|Vint|Ψ(0)>;
potential matrix elements
evaluated analytically)

“exact”*

perturbative
LΠ=1−

LΠ=1−

LΠ=1−
LΠ=3−

LΠ=0+

LΠ=2+

*method of Kestner and Duan,
PRA 76, 033611 (2007)



Perturbative Treatment for N=4:
Weak Attraction

LΠ=0+ LΠ=2+

LΠ=1+ 

(unnatural parity)

LΠ=1− (natural 
parity)

LΠ=3−

Ground state
manifold

1st excited state
manifold

Black solid lines: Perturbative.
Colored symbols: “exact” (stochastic 
variational approach; see later in talk). 



Perturbative Treatment for Weakly-
Interacting Four-Fermion Gas (Lrel=2)

Blue symbols:
Essentially exact 
zero-range 
energies.

Blue lines:
Perturbative results.

Two well 
resolved states.

Current work: Determine perturbative energy shifts for large
number of energy manifolds and calculate fourth-order virial coefficient
(expected to be qualitatively correct up to aho/|as|≈2).

K. M. Daily and D. Blume (PRA accepted).

|as| / aho



Virial Expansion for Fermi Gas Based
on Two- and Three-Fermion Spectra

 Liu et al., PRL 102, 160401 (2009)

“High-T” thermodynamics 
in trap (virial coefficients
calculated from two- and 
three-body energies):

Idea:

Start with grand partition
function:
Z  = Tr[-(H-µN)/(kBT)]

Perform cluster expansion:
Z = 1 + zQ1 + z2Q2 + …

where Qn= Trn[exp(-Hn/(kBT))];
fugacity z = exp[µ/(kBT)] << 1.

Thermodynamic potential Ω:
Ω = -kBT ln(Z)
Ω = -kBT Q1 (z + b2z2 + b3z3+…)
bi = bi(Q1,…,Qi)



How Can Hyperspherical Framework be
Applied to Unitary Fermi Gas?

• Unitary and NI system have same number of length scales.

• Wave function at unitarity separates just as in NI case:

• It follows:

• ν obtained from hyperangular equation (with interactions).

• Ladder of states separated by 2hν.

• Alternatively: Calculate Eunit and “back out ν”

Werner and Castin, PRA 74, 053604.

unit   + ECM



Hyperspherical Potential Curves for
N=3-20: Non-Interacting and Unitarity

a=0

a=∞

Odd-even oscillations:
Odd-N curves pushed
up compared to even-N
curves.

Odd-even oscillations
usually interpreted 
in terms of excitation 
gap Δ(N) → see later.

N1−N2=1

N1−N2=0



How Do We Obtain Solutions? Semi-
Stochastic Variational Approach I

Non-relativistic system Hamiltonian:

Idea:
Use basis set expansion approach that
involves Gaussian of different widths in
interparticle distances.

H = Σi (Ti + Vtrap,i) + ΣI<j Vtwobody,ij ;    Vtwobody=V0exp[-(0.5r/r0)2]

Spherically 
symmetric.

Sum over 
unlike spin
pairs.

Short-range. Simple.
Independent of spin
and angular momentum.

rr0

aho

Method first introduced to cold atom community for bosons by Sorensen, Fedorov and
Jensen, AIP Conf. Proc. No. 777, p. 12 (2005). Our work inspired by work on fermions by
von Stecher and Greene, PRL 99, 090402 (2007). For details see: Suzuki and Varga
(Springer, 1998); von Stecher, Greene, Blume, PRA 77, 043619 (2008).



How to Treat Interacting System? Semi-
Stochastic Variational Approach II

Idea:
Use basis set expansion approach that involves correlated Gaussian.

 Symmetrized basis function Ψ =  ΣNp |v|L YLM(v) exp(-xTAx/2)

 x collectively denotes N-1 Jacobi coordinates.
 A denotes (N-1)x(N-1) dimensional parameter matrix.
 v = u⋅x
 u denotes N-1 dimensional parameter vector.

∧

Determines angular 
momentum: L distributed
with “weight” ui among
the Jacobi vectors ρi

Sum over interparticle
distances:
ΣI<j −(rij/dij)2 / 2



How to Treat Interacting System? Semi-
Stochastic Variational Approach III

Hamiltonian matrix can be evaluated analytically.
Rigorous upper bound for energy (“controlled accuracy”).
Basis functions with good angular momentum and parity (unnatural
parity states must be treated differently…).
Matrix elements for structural properties and momentum distribution
can be calculated analytically.
Linear dependence of basis functions needs to be watched carefully.

Computational effort increases with N:

 Evaluation of Hamiltonian matrix elements involves diagonalizing
(N-1)x(N-1) matrix.

 More degrees of freedom require more basis functions.
 Permutations Np scale nonlinearly (Np=2,4,12,36 for N=3,4,5,6).



SV Approch at Unitarity:
Illustration of Convergence for N=3

r0=0.01aho

r0=0.03aho

r0=0.02aho

Larger range:
Faster convergence.



Confirmation of virial theorem
At unitairty:

Extrapolation of Four-Body “Ground
State Energy” to r0→0 Limit (Lrel=0)

Confirmation of virial theorem at 
unitarity: E(∞, 0) = 2Vtr(∞, 0).
[e.g.: Thomas et al., PRL 95, 120402 (2005)]

as = ∞

aho/as = 5

2Vtr

E

Our zero-range limit: E=5.0092(5)hν
[uncertainty arises from fit]. Effective
interaction theory: E=5.050(24)hν.
[Alhassid et al., PRL 100, 230401 (2008)].

Non-linear
dependence on r0

In this case, it is better 
to first subtract the energy
of two dimers and to then
extrapolate.



Natural Parity States at Unitarity for
Three- and Four-Fermion Systems

Erel,unit = (2n+νunit+3/2)hν; n=0,1,2,…

Energies of three-fermion
system obtained by solving
transcendental equation.

Energies of four-fermion
system obtained by stochastic
variational approach (extrapolation
of finite-range energies to zero-
range limit).

Future goal: Similar calculations
for unnatural parity states of
four-fermion system…

For N=3: Werner and Castin, PRL 97, 150401
(2006); huge body of earlier work...
For N=4: Daily and Blume (PRA, 2010); Lrel=0:
von Stecher and Greene, PRA 80, 022504 (2009).

N=3

N=4

ν u
ni

t
ν u

ni
t



Energy Crossover Curves for Few-
Fermion System (Natural Parity States)

• Benchmark for approximate numerical and analytical approaches:
 Monte Carlo (see later).
 Effective low-energy theories: Four-body problem is becoming

tractable (Stetcu et al., PRA 76, 063613 (2007); Alhassid et al., PRL 100, 230401 (2008); Hammer
et al.).

• Next:
 Focus on N=4, Lrel=0 system and quantify correlations.

Lrel=0

Lrel=4Lrel=2

Lrel=3
Lrel=1

N=4 N=5

s s



Universal “Tan” Relations for ZR
Interactions throughout Crossover

Quantitative relation between distinctly different quantities such
as change of energy, trap energy, pair distribution function and
momentum distribution, inelastic two-body loss rate,...

“Integrated contact intensity” I(as) defined through momentum
relation [Tan, Annals of Physics (‘08)]: Ik(as) = limK→∞ π2 K Natom(k>K).

• It then follows:

 Adiabatic relation: ∂E(as,0)/∂as = h2/(16 π3mas
2) Iadia(as).

 Virial theorem: E(as,0) = 2 <Vtrap(as,0)> - h2/(32π3mas) Ivirial(as).

 Pair relation: Ipair(as) = lims→0 4π Npair(r<s) / s.

As a check, use all four relations to obtain I(as).



Integrated Contact for Energetically
Lowest Gas-Like State of N=4 System

Iadia(as)
Ivirial(as)
Ipair(as)
Ik(as)

I(as) changes by about three
orders of magnitude throughout
crossover.
Very good agreement among the
four “different” I(as).

Blume and Daily, 
PRA 80, 053626 (2009).

Recent experiments:
Hu et al.,
arXiv:1001.3200.
Stewart et al.,
arXiv:1002.1987.
Earlier work:
Partridge et al., PRL 95,
020404 (2005).



Pair Distribution Functions for N=4
(r0=0.005aho)

aho/as=-5

fit for r/aho∈
[0.015,0.1]

aho/as=-10

aho/as=0
aho/as=10



Structural Correlations (N=4): Pair
Distribution Functions for r0=0.005aho

aho/as=-10

aho/as=0
aho/as=10

“BCS side” “BEC side”

Development of two-peak
structure indicates pair
formation:



More Correlations: One-Body Density
Matrix and Natural Orbitals

• One-body density matrix:
ρ(r’,r) = N↑ ∫…∫Ψ*(r’,r2,…,rN)Ψ(r,r2,…,rN)dr2…drN

• Alternatively:
ρ(r’,r) = <ψ+(r’)ψ(r)>, where ψ+(r’) and ψ(r) are
field operators that create and destroy a particle
at position r and r’.

• It follows: n(k) = (2π)-3 ∫∫ exp[ik⋅(r-r’)]ρ(r’,r) drdr’.

• Partial wave decomposition:
n(k) = Σlm nl(k) Ylm(θk,ϕk).

• Then: ∫n(k)dΩk = (4π)1/2 n0(k)
Shown on next 
slide for N=4



l=0 Projection of Momentum
Distribution for N=4

NI unitarity

aho/as=10

-2.5
2.5

10
7.5

5

2.5

(4
π)

-1
/2

Large momentum k:
Small length scale (pair).



Lowest Partial Wave Projection of
Momentum Distribution

1/as=0

aho/as=-10

aho/as
=10

aho/as=-5

aho/as=0

Ik,↑(as) =
lim1/k→0 4π5/2n00,↑(k)k4



Larger Systems: Fixed Node Diffusion
Monte Carlo (FN-DMC) Approach

• Stochastic approach.
• Results in upper bound for energy.
• Results are as good as input (trial wave

function).

• More details in next lecture…



FN-DMC and SV: Comparison of
Structural Properties at Unitarity

SV

FN-DMC

N=3
L=1

N=4
L=0

Pair distribution function for up-down distance:

Range 
r0=0.01aho.

Very good
agreement
between CG
and FN-DMC
results.

N=4: 
Enhanced
probability at
small r (pair
formation).von Stecher, Greene, Blume,

PRA 77, 043619 (2008).



Excitation Gap and Residual
Oscillations at Unitarity

EFN-DMC-Efit

DFT, Bulgac
(PRA 76, 040502(R ), 2007)

N1−N2=1

N1−N2=0

Δ(N)

residual oscillations

N odd, N=N1+N2 and N1=N2+1
See also, Chang and Bertsch,
PRA 76, 021603(R ) (2007).

Blume/von Stecher/
Greene:
PRL 99, 233201 (2007);
PRA 77, 043619 (2008).

Fixed-node diffusion
Monte Carlo 



Radial Density at Unitarity: Where Is
“Spare” Atom Located?

N=3

N=9

N=15

N=9: “Extra” particle more
delocalized.
N=15: “Extra” particle sits
near the surface.



Summary

• BCS-BEC Crossover from the few-body
perspective.

• Weakly-attractive regime.
• Unitarity.

• Next lecture: BEC regime, combined with
dimer-dimer scattering length for unequal
masses



Related Topics and Natural Extensions
• Two-component Fermi gases with unequal masses, unequal

trapping frequencies, unequal populations:
 Stability of unequal-mass systems (trimer formation)?
 Universal behavior?
 Phase separation?

• Multi-component s-wave interacting Fermi gas:
 Details of underlying two-body potential?
 Implications of existence or absence of three-particle negative

energy states?

• Beyond s-wave:
 p-wave interactions?
 p-wave induced interactions?


