Dipolar quantum gases

Robert E. Zillich

Introduction

2D DQ

perpendicular tilted

Quasi-2D DQG

Unpolarized DQG

# Dipolar quantum gases Barcelona, May 2010

Robert E. Zillich

### Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria

May 14, 2010

# Outline

#### Dipolar quantum gases

Robert E. Zillich

Introduction

2D DQ

perpendicular tilted

Quasi-2D DQG

Unpolarized DQG

### Introduction

Dipolar quantum gases: 2D

perpendicular polarization tilted polarization

Dipolar quantum gases: Slabs

Dipolar quantum gases: weakly/unpolarized dipoles

# Introduction to dipolar QGs

### experiments:

- permanent magnetic dipole moments of atoms (Cr):
   Pfau group (Lahaye et al, Nature 448, 672 (2007))
- permanent electric dipole moments of heteronuclear dimers (RbK, etc): transfer atom pairs to weakly bound state by Feshbach resonance — transfer to rovibrational g.s. by STIRAP laser pulses (Innsbruck; JILA, NIST: Ni et al., Science 322, 231 (2008),...)
- $\blacktriangleright$  Diatomic molecules in optical lattices (Danzl et al., Nature Physics 6, 265 (2010): Cs\_2)

### dipole-dipole interaction:

polarized, 2D: 
$$v_{dd}^{\parallel}(\mathbf{r}_{12}) = d^2 \frac{1}{r_{12}^3}$$
  
polarized, 3D:  $v_{dd}^{\parallel}(\mathbf{r}_{12}) = d^2 \frac{1 - 3\cos^2\theta_{12}}{r_{12}^3}$   
unpolarized, 3D:  $v_{dd}(\mathbf{r}_{12}) = d^2 \frac{\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 - 3(\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{r}})(\hat{\mathbf{e}}_2 \cdot \hat{\mathbf{r}})}{r_{12}^3}$ 

units: length  $r_0 = \frac{md^2}{\hbar^2}$ ; energy  $\epsilon_0 = \frac{\hbar^2}{mr_0^2}$ 

#### Dipolar quantum gases

#### Robert E. Zillich

#### Introduction

#### 2D DQ

perpendicular tilted

Quasi-2D DQG

#### Dipolar quantum gases

Robert E. Zillich

#### Introduction

#### 2D DQ

perpendicular tilted

Quasi-2D DQG

Unpolarized DQG

### our interest:

- strong interactions effects strong correlations between pairs
- effects of anisotropy of V<sub>dd</sub>
- effects of rotational degrees of freedom of molecular BEC

### methodology:

 quantum many-body method: hypernetted chain Euler-Lagrange for ground state (HNC-EL) and excited state (TDHNC-EL) recent progress by Campbell and Krotscheck on the TDHNC-EL front

 QMC: path integral ground state MC (PIGSMC) for ground state and path integral MC (PIMC) for T > 0 recent progress in group here (quasi-6th order,...) and by REZ and Chin on high order propagators ("any-order")

# (time-dependent) hyper-netted chain Euler-Lagrange ground state: HNC-EL

$$\Phi_{0}(R) = \prod_{i} \varphi(\mathbf{r}_{i}) \prod_{i < j} f(\mathbf{r}_{i}, \mathbf{r}_{j}) \cdots = e^{\frac{1}{2} \sum_{i} w_{1}(\mathbf{r}_{i})} e^{\frac{1}{2} \sum_{i < j} w_{2}(\mathbf{r}_{i}, \mathbf{r}_{j})} \dots$$
$$\frac{\delta \langle H \rangle}{\delta w_{1}(\mathbf{r})} = 0 , \qquad \frac{\delta \langle H \rangle}{\delta w_{2}(\mathbf{r}_{1}, \mathbf{r}_{2})} = 0 , \qquad \frac{\delta \langle H \rangle}{\delta w_{3}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3})} = 0$$

- u<sub>1</sub>(r<sub>i</sub>) only (& effective δ-potential): Hartree (GP)
- u<sub>2</sub>(r<sub>i</sub>, r<sub>j</sub>): minimal requirement for repulsive interaction
- $u_3(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k)$ : even better...

### excitations: TDHNC-EL

$$\Psi(R; t) = e^{-iE_0 t} \frac{e^{\frac{1}{2}\delta U(R;t)}}{\langle \Psi | \Psi \rangle^{1/2}} \Phi_0(R)$$
  
with  $\delta U(R; t) = \sum_i \delta u_1(\mathbf{r}_i; t) + \sum_{i < j} \delta u_2(\mathbf{r}_i, \mathbf{r}_j; t) + \dots$   
 $\delta \int dt \langle \Psi(t) | H(t) - i\hbar \frac{\partial}{\partial t} | \Psi(t) \rangle = 0$ 

δu<sub>1</sub>(r<sub>i</sub>; t) only: Bjil-Feynman approximation (Bogoliubov-deGennes/linearized GP)

- δu<sub>2</sub>(r<sub>i</sub>, r<sub>i</sub>; t) & some approximations: CBF-BW
- δu<sub>3</sub>(r<sub>i</sub>, r<sub>j</sub>, r<sub>k</sub>; t) triplets & less approximation: Krotscheck & Campbell

Dipolar quantum gases

#### Robert E. Zillich

#### Introduction

#### 2D DQG

perpendicular tilted

Quasi-2D DQG

# Perpendicular dipoles in 2D

 $\rightarrow$  recent work with Ferran, Gregory, and Jordi: excitation spectrum by combining DMC with CBF-BW (PRL **102**, 110405 (2009))

increase density:

- roton energy not going to 0 in vicinity of solidification
- phonon-roton splits off from Bogoliubov mode

Bogoliubov-deGennes (linearzed GP)

Bijl-Feynman approximation  $\frac{\hbar^2 k^2}{2mS(k)}$ 

CBF-BW approximation

w/triplets  $\delta u_3$ 

dynamic structure function  $S(k, \omega)$ :



Robert E. Zillich

#### Introduction

#### 2D DQ

perpendicular tilted

Quasi-2D DQG

# Tilted dipoles in 2D with HNC/0-EL

anisotropy is not probed in 2D with perpendicular polarization axis — tilt polarization axis to form homogeneous *anisotropic* 2D quantum gas (i.e. nematic

quantum gas)

10

HNC/0-EL ground state calculation (no elementaries, no triplets):

- test system to study well-defined instability (at angle α<sub>cr</sub> = 35.26°?)
- coupling of excitations: rotons in strongly correlated direction, but not in weakly correlated direction
- ► anisotropic solidification? gas state: isotropic speed of sound ↔ solid state: <u>an</u>isotropic speed of sound



Dipolar quantum gases Robert E. Zillich

#### Introduction

#### 2D DQG

perpendicula tilted

unteu

Quasi-2D DQG

Unpolarized DQG





all plots for  $\rho = 64$ ,  $\alpha = \alpha_{cr}$ 

S(k)

# Tilted dipoles in 2D with HNC/0-EL

increase density towards solidification:  $\rho = 256$ ,  $\alpha = 33.23^{\circ}$ 



roton energy  $\rightarrow 0? \longrightarrow QMC + CBF-BW$  (or better)!

#### Dipolar quantum gases

Robert E. Zillich

Introduction

2D DQG

perpendicula

tilted

Quasi-2D DQG

### quasi-2D: Slabs of dipolar quantum gases

relax infinitely strong confinement in z-direction  $\Rightarrow$  system unstable via tunneling towards head-to-tail configurations  $\Rightarrow$  stabilize with repulsive interaction

$$H = \sum_{i} \left[ -\frac{\hbar^2}{2m} \nabla_i^2 + \frac{m\omega^2}{2} z_i^2 \right] + \sum_{i < j} \left[ v_{\rm dd}(\mathbf{r}_{ij}) + \frac{\sigma^{12}}{r_{ij}^{12}} \right]$$



х



studied in mean field approximation (GP + linearized GP) by Santos et al., PRL  ${\bf 90}$  250403 (2003): rotonization, followed by instability

completely different roton than roton in dense, strongly interacting systems like LHe!

#### Dipolar quantum gases

#### Robert E. Zillich

#### Introduction

#### 2D DQ

perpendicular tilted

#### Quasi-2D DQG

# Roton in dilute system

### Bijl-Feynman approximation

- like in mean field: "rotonization"
- ▶ system unstable towards  $\sigma-$ ,  $\rho+$ ,  $\omega-$
- HNC-EL does not reach point of instability where roton energy E<sub>roton</sub> (presumably) vanishes
- in <sup>4</sup>He: Feynman roton too high by factor of 2

### beyond Bijl-Feynman approximation

- dynamic structure function S(k, E) with CBF-BW approximation of TDHNC-EL (no triplet correlations; convolution approximation)
- roton energy almost unchanged
- strong damping at 2 × E<sub>roton</sub>

system (meta)stable up to  $E_{roton} = 0$ , but HNC-EL collapses to lower-energy phase before that happens...

$$S(k,E)$$
 for  $ho=$  2,  $\omega^2=$  10,  $\sigma=$  0.3



#### Dipolar quantum gases

#### Robert E. Zillich

#### Introduction

#### 2D DQ

perpendicular tilted

#### Quasi-2D DQG

## Pair distribution function: dimerization?

pair distribution function  $g(z, z', r_{\parallel})$ ... probability to find particle at (x, y, z) and (another) particle at (x', y', z')  $(r_{\parallel} = \sqrt{(x - x')^2 + (y - y')^2})$ , divided by  $\rho(z_i)$ 



Dipolar quantum gases

#### Robert E. Zillich

#### Introduction

#### 2D DQG

perpendicular tilted

#### Quasi-2D DQG

Unpolarized DQG

### ► z' = -z

- correlation hole at (0, 0, 0) due to repulsion (σ/r)<sup>12</sup>
- strong peak at  $\mathbf{r}_{\parallel} = 0$  expected for dimer (2 bound dipoles)
- ▶ dimerization? → check other side of phase transition with QMC
- ► *E<sub>roton</sub>* small: system stable or just metastable → energetics with QMC

(D. Hufnagl, E. Krotscheck, REZ, JLTP 158, 85 (2010))

# Stability analysis: static response function

tracking Eroton not practical in HNC-EL...

static response function  $\chi(z, z', r_{\parallel}) \dots$  density response to a (weak) perturbation  $\sum_{i} U_{\text{pert}}(\mathbf{r}_{i})$ 

- $\rightarrow$  F.T. w/resp to  $r_{\parallel}$ :  $\chi(z, z', k)$
- $\rightarrow$  diagonalize w/resp to z, z':  $\chi_n(k)$
- $\rightarrow$  maximal response:  $\chi_0 \equiv \max[\chi_n(k)]$



(extrapolation by fitting  $a(\sigma - \sigma_0)^b$ )

Dipolar quantum gases

Robert E. Zillich

Introduction

2D DQG

perpendicular tilted

Quasi-2D DQG

# Outlook on unpolarized / partially polarized DBG

molecular DBG has inner degree of freedom: molecule rotation,  $\hat{\mathbf{e}}_i$ 

$$v_{dd}(\mathbf{r}_{12}) = d^2 \, \frac{\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 - 3(\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{r}})(\hat{\mathbf{e}}_2 \cdot \hat{\mathbf{r}})}{r_{12}^3}$$

### Weak interactions

• mean field estimate: GP equation for  $\Psi_0(\mathbf{r}, \Omega)$ 

coupling rotational degrees of freedom of molecules by dipole-dipole interaction: splitting of j = 1 state by  $\Delta \approx \frac{1}{3\epsilon_0} nd^2$  $\Delta = O(10^{-3} \text{cm}^{-1})$  for d = 5Debye and  $n = 10^{14} \text{cm}^{-3}$ 

### Strong interactions

- HNC-EL w/rotations
- PIGSMC w/rotations

Dipolar quantum gases

Robert E. Zillich

#### Introduction

2D DQG

perpendicular tilted

Quasi-2D DQG

# Acknowledgements

# collaborators:

2D DBG Ferran Mazzanti, Gregory Astrakharchik, Jordi Boronat

### quasi-2D DBG

Diana Hufnagl (HNC-EL), Rainer Kaltseis (mean field), Vesa Apaja (CBF-BW), Eckhard Krotscheck (HNC-EL)

### unpolarized molecular BG

Brendan Abolins, K. Birgitta Whaley: PIGSMC

€€€: Austrian Science Foundation FWF #21264 Acciones Integradas ES-19/2009 Dipolar quantum gases

Robert E. Zillich

Introduction

2D DQ

perpendicular tilted

Quasi-2D DQG