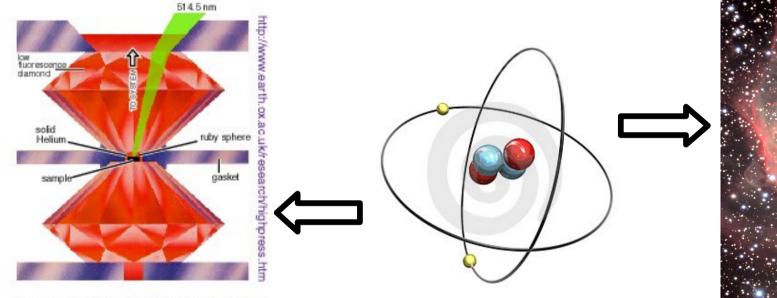
THEORETICAL STUDY OF RARE GASES (RG) AND RG-X (X=He,H₂) MIXTURES UNDER PRESSURE



The Diamond-Anvil Cell (DAC). Raman spectra are excited with 514.5 nm laser light in 135° scattering configuration.

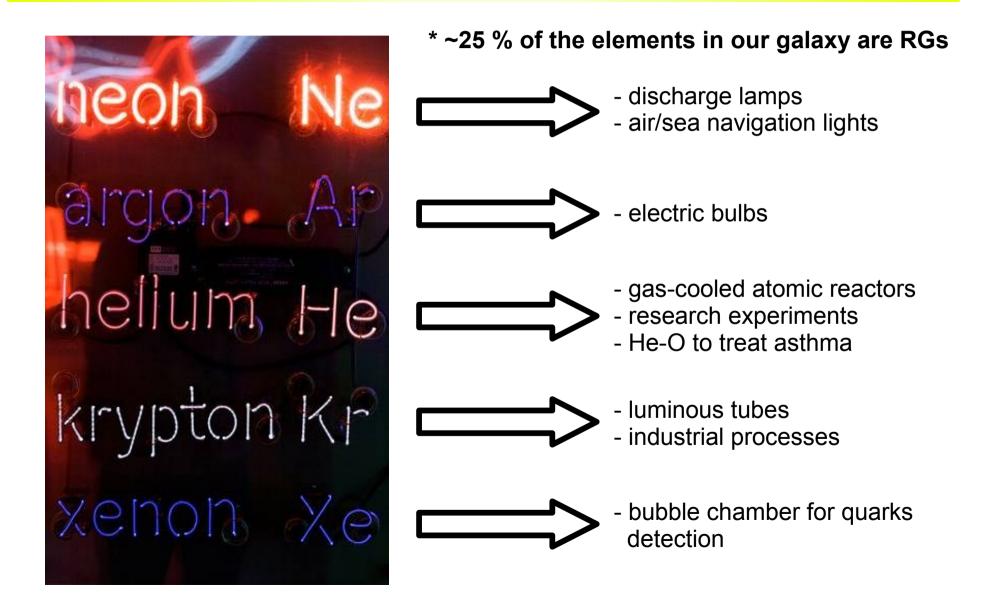
Claudio Cazorla

University College London, UK Department of Earth Sciences

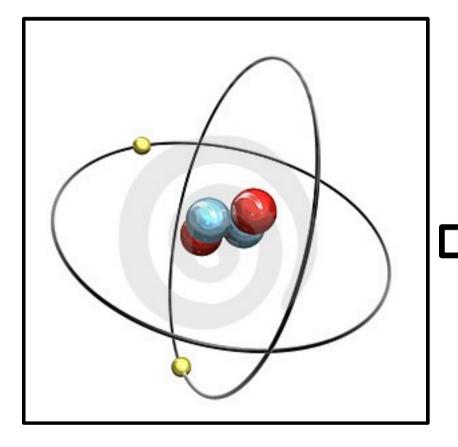
RGs and mixtures : Outline

- 1. Interest and Properties
- 2. Theoretical Methods: brief description
- 3. ⁴He up to 60 GPa
- 4. $RG(He)_2$ mixtures under pressure
- 5. $Ar(H_2)_2$ compound under pressure

RGs and mixtures : Interest



RGs and mixtures : Properties

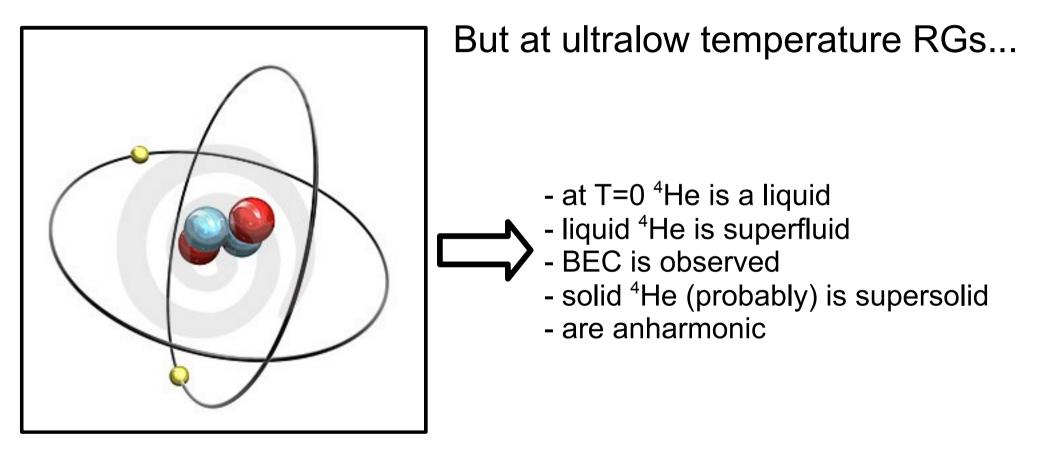


At normal conditions RGs...

- monoatomic gases
- closed-shell electronic structure
- lack of chemical reactivity
- light RGs are very compressible
- are insulators
- interatomic interactions are weak

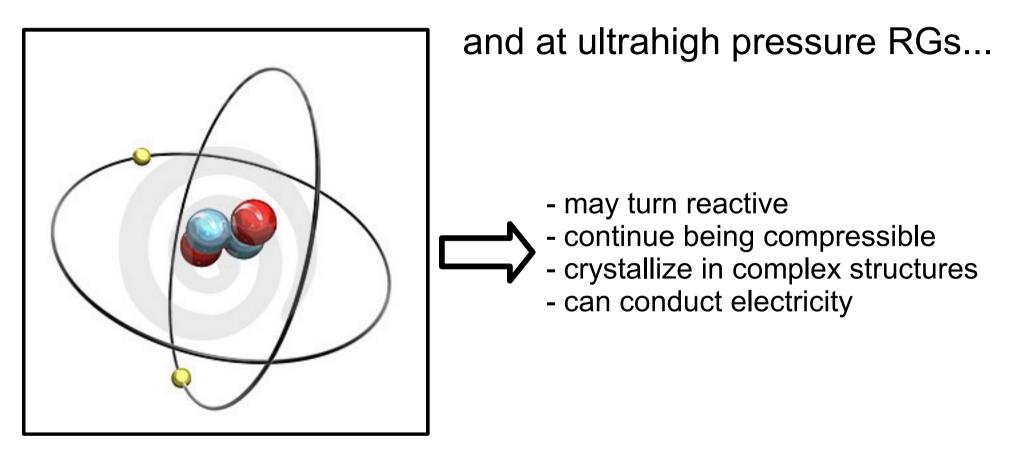
...seem simple systems

RGs and mixtures : Properties



...quantum effects become macroscopic!

RGs and mixtures : Properties



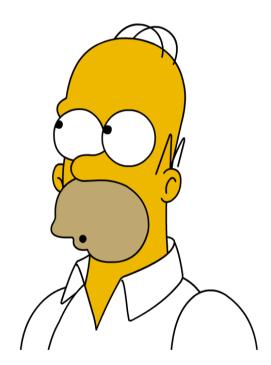
...undergo dramatic phase transitions!

At normal P-T conditions, RG's can be simulated with reliability using **semi-empirical radial pair potentials** (SPP) and **classical molecular dynamics** (MD)

$$V_{LJ}(R) = 4\epsilon \left[\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^{6} \right]$$

$$\vec{F} = m\vec{a}$$

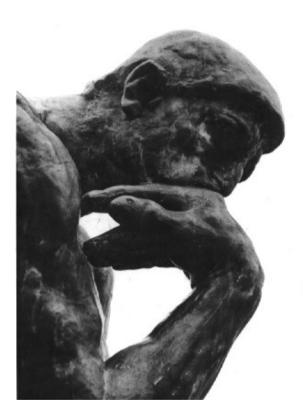
$$Z(V,T) = \frac{1}{N!\Lambda^{3N}} \int e^{-\beta U(\vec{R})} d\vec{R}$$



But at low T and P...

- Zero-point motion (ZP)
- statistical quantum effects (BEC, superfluidity,...)
- large anharmonicity
- Van der Waals forces are very important

MD is no longer valid, quantum approaches are required... Diffusion Monte Carlo (DMC) Path Integral Monte Carlo (PIMC)



And at high P and T...

- Zero-point motion (ZP) still important
- anharmonicity still present
- changes in electronic structure
- Van der Waals forces still important

SPP no longer valid, electronic structure methods required ... Density Functional Theory (DFT) Quasi-harmonic approximation (QH)

Diffusion Monte Carlo

$$\frac{\partial \Psi}{\partial t} = -i(\hat{H} - E_0)\Psi \qquad \hat{H} = \hat{T} + \hat{V}$$

$$\Psi(t) = \mathrm{e}^{-i(\hat{H} - E_0)t} \Psi(0)$$

Time-dependent Schrödinger equation

Diffusion Monte Carlo

$$\Psi(0) = \sum c_n \phi_n \qquad H \phi_n = \epsilon_n \phi_n$$

$$\Psi(t) = \sum e^{-i(\epsilon_n - E_0)t} c_n \phi_n$$

DMC "trick" $i t \rightarrow \tau$

Diffusion Monte Carlo

$$\Psi(\tau) = \sum e^{-(\epsilon_n - E_0)\tau} c_n \phi_n$$

$$\lim_{\tau\to\infty}\Psi(\tau)\to c_0\phi_0$$

DMC is an exact Ground-State Method

Diffusion Monte Carlo

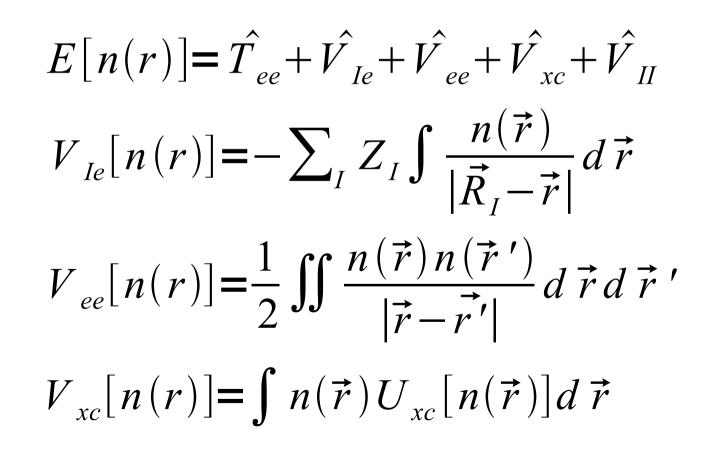
$$G(\vec{R}_1 \rightarrow \vec{R}_2, \tau) = \langle \vec{R}_1 | e^{-(\hat{H} - E_0)\tau} | \vec{R}_2 \rangle$$

$$G(\vec{R}_1 \rightarrow \vec{R}_2, \Delta \tau) \approx \int \langle \vec{R}_1 | e^{-\hat{T}\frac{\Delta \tau}{2}} | \vec{R}_3 \rangle \langle \vec{R}_3 | e^{-\hat{V}\Delta \tau} | \vec{R}_4 \rangle$$

$$\langle \vec{R}_4 | e^{-\hat{T}\frac{\Delta \tau}{2}} | \vec{R}_2 \rangle d\vec{R}_3 d\vec{R}_4$$

Green's function short imaginary time approximation

Density Functional Theory



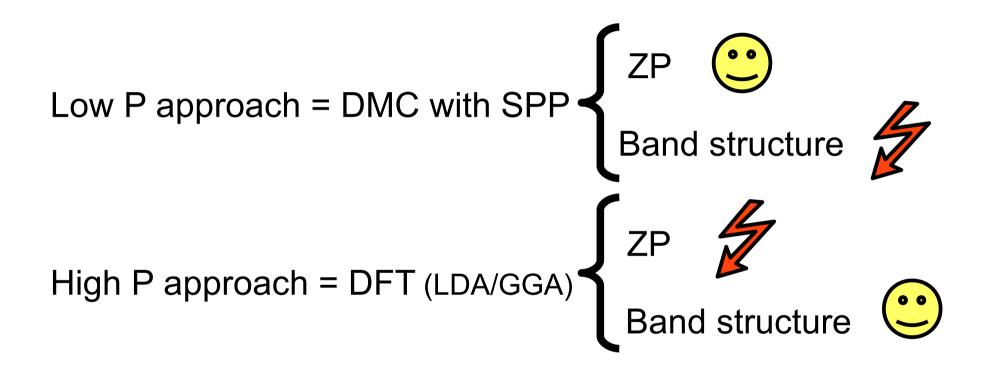
Density Functional Theory

$$E[n(r)] = \hat{T}_{ee} + \hat{V}_{Ie} + \hat{V}_{ee} + \hat{V}_{xc} + \hat{V}_{II}$$

$$n(r) = \sum_{i} c_{i} \psi_{i}^{2}(r)$$

min
$$E[n(r)] = E[n_0(r)] = E_0$$

Kohn-Sham equations are solved self-iteratively until the minimum of the energy functional is reached



Mixed DMC and DFT approach in order to treat ions and electrons quantum mechanically

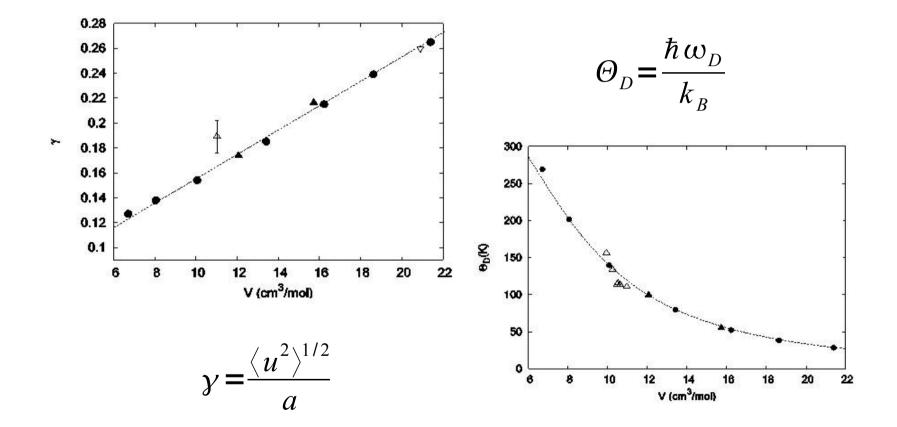
$$E_0(V) = E_{DMC}^{Aziz\,II}(V) + \Delta E^{el}(\vec{R})$$

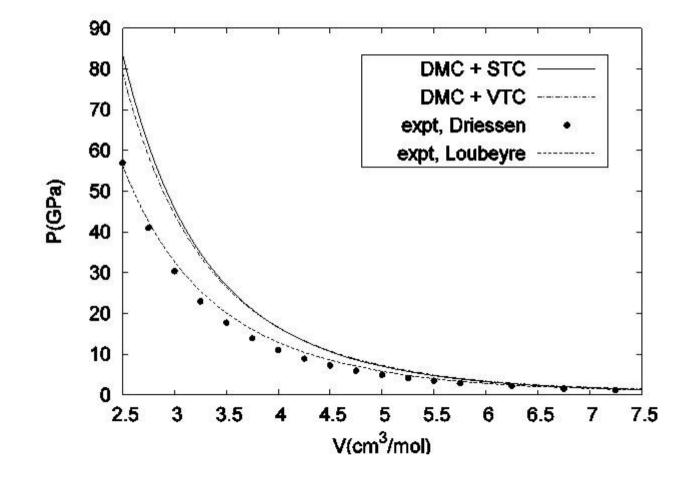
$$\Delta E^{el}(\vec{R}) = E[n(\vec{R})] - V^{AzizII}(\vec{R})$$

Electronic correlations are included via a 2nd order perturbation correction while ions are treated QM

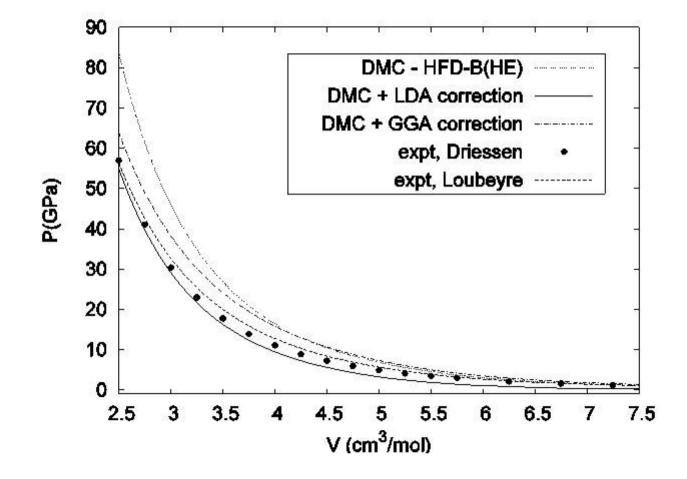
Table 1. Total, kinetic and potential energies per particle of solid ⁴He including STC (E_{DMC} , E_k and E_p , respectively) as computed with DMC and the HFD–B(HE) Aziz potential. Figures within parentheses account for the statistical errors.

$V (\mathrm{cm}^3 \mathrm{mol}^{-1})$	$E_{\rm DMC}/N$ (K)	$E_{\rm k}/N$ (K)	$E_{\rm p}/N$ (K)
22.60	-6.51(2)	21.36(6)	-27.87(6)
20.95	-6.22(2)	24.20(6)	-30.42(6)
19.34	-5.50(2)	27.63(6)	-33.13(6)
17.96	-4.32(2)	32.01(6)	-36.33(6)
16.76	-2.50(2)	35.24(6)	-37.74(6)
15.24	1.63(2)	42.63(6)	-41.00(6)
14.37	5.25(3)	47.09(8)	-41.84(7)
13.41	11.11(5)	53.66(9)	-42.55(8)
10.06	68.80(5)	89.90(9)	-21.10(8)
8.04	192.45(5)	133.00(9)	59.45(8)

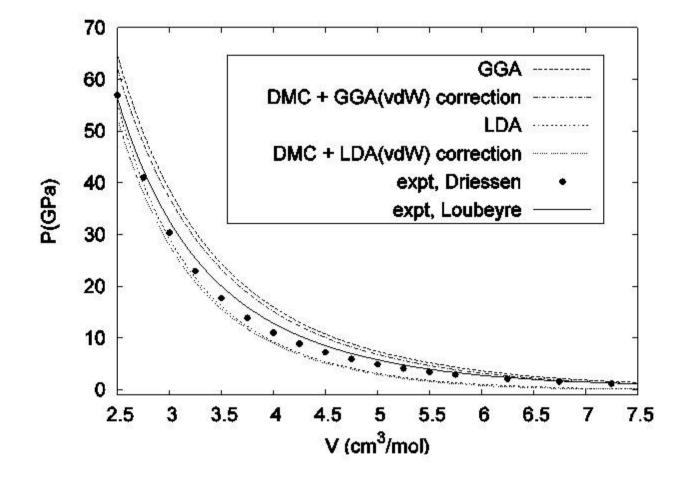




C. Cazorla and J. Boronat, J. Phys.: Cond. Matt. 20, 015223 (2008)



C. Cazorla and J. Boronat, J. Phys.: Cond. Matt. 20, 015223 (2008)



C. Cazorla and J. Boronat, J. Phys.: Cond. Matt. 20, 015223 (2008)

Table 2. Calculated DMC energies and corrections $\langle \Delta E \rangle_{\text{DMC}}$ per particle for solid ⁴He at some selected volumes. Within the parentheses are the statistical uncertainties, which in the case of the corrections correspond to $\sqrt{\langle \delta \Delta E^2 \rangle}_{\text{DMC}}/N$ (we note that (98) $\equiv \pm 0.98$ and (5) $\equiv \pm 0.05$).

V (cm ³ mol ⁻¹)	$E_{\rm DMC}/N$ (K)	$\langle \Delta E \rangle_{\rm DMC}^{\rm LDA} / N$ (K)	$\langle \Delta E \rangle_{\rm DMC}^{\rm GGA}/N$ (K)
10.06	68.80(5)	0.00(75)	0.00(14)
6.70	404.55(5)	-352.55(88)	72.06(33)
5.03	1163.54(8)	-813.08(55)	200.43(39)
4.02	2444.11(12)	-1407.99(50)	232.38(35)
3.35	4294.67(15)	-2165.61(61)	43.53(50)
2.87	6728.33(38)	-3113.77(67)	-389.66(51)
2.51	9742.06(49)	-4263.34(98)	-1055.16(98)

Table 3. Parameters of the fits performed with relation (14) for the resulting EOSs. The headers on this first row correspond to experimental values of reference [2], DMC calculations with pair potential HFD–B(HE), DMC calculations with many-body corrections as obtained with LDA, GGA, LDA plus vdW interaction and GGA plus vdW interaction, respectively. P_{max} is the value of the pressure obtained at the smallest studied volume 2.5 cm³ mol⁻¹.

	Expt	DMC	LDA	GGA	LDA (v dW)	GGA (v dW)
$V_0 ({\rm cm}^3 {\rm mol}^{-1})$	13.72	20.16	7.77	12.93	7.06	11.35
B_0 (GPa)	0.225	0.018	1.884	0.510	3.072	0.901
B'_0	7.35	9.85	6.66	6.53	6.19	6.13
$P_{\rm max}$ (GPa)	56.94	83.60	54.83	63.79	52.42	62.00

VOLUME 70, NUMBER 2

PHYSICAL REVIEW LETTERS

11 JANUARY 1993

High Pressure Measurements of the He-Ne Binary Phase Diagram at 296 K: Evidence for the Stability of a Stoichiometric Ne(He)₂ Solid

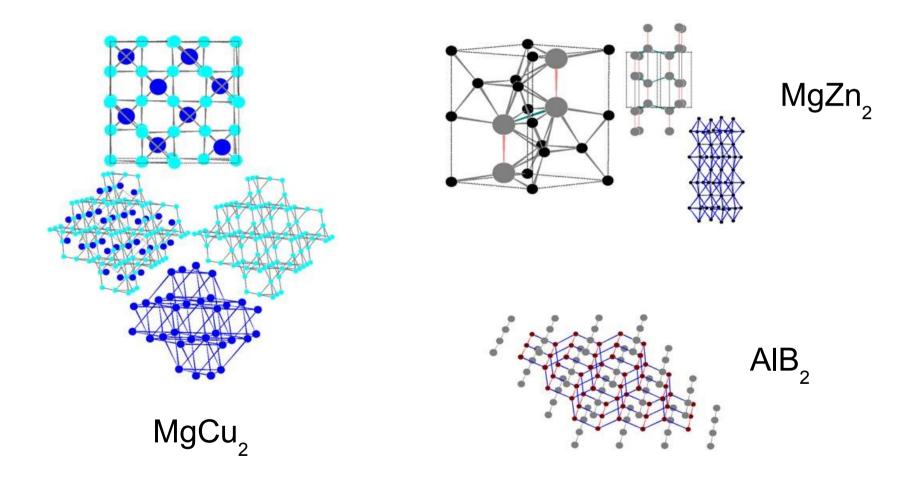
Paul Loubeyre, Michel Jean-Louis, and René LeToullec Laboratoire de Physique de Milieux Condensés, Université Paris 6, Boite 77, 4 place Jussieu, 75252 Paris, France

> Lydie Charon-Gérard Commissariat à l'Energie Atomique, BP n°7, 77181 Courtry, France (Received 2 November 1992)

The binary phase diagram of He-Ne mixtures has been measured at 296 K in a diamond anvil cell. It is of the eutectic type with no fluid-fluid separation of phases. A homogeneous solid mixture is shown to be stable for a mole fraction of He equal to $\frac{2}{3}$. Single-crystal synchrotron x-ray measurements indicate that this solid is ordered with 12 atoms in the unit cell. Gibbs free energy calculations support the attribution to the MgZn₂ type structure. It is the first Laves phase observed in a van der Waals molecular compound.

RG-He mixtures are **interesting** compounds for:

- astrophysics
- science and technology
- crystallography (Laves structures)
- pressure induced electronic phase transitions
- theory challenge



Methodology:

- * DFT (LDA & GGA)
- * Quasi-Harmonic Approximation (QH)

$$F_{\text{harm}}(V,T) = \frac{1}{N_{\text{q}}} k_B T \sum_{\mathbf{q},s} \ln \left\{ 2 \sinh \left[\frac{\hbar \omega_{\mathbf{q}s}(V,T)}{2k_B T} \right] \right\}.$$

Approach reliable at intermediate and high P (vdW issue)

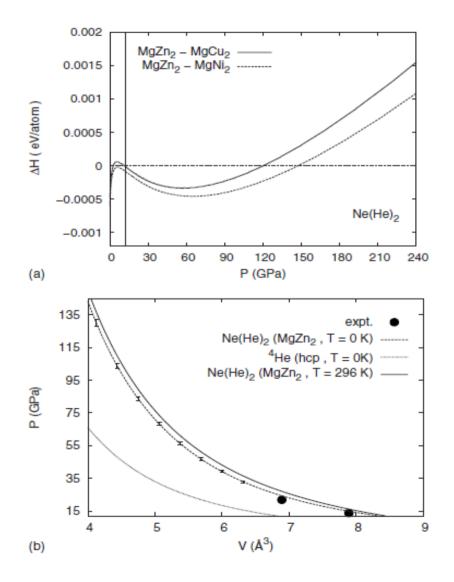
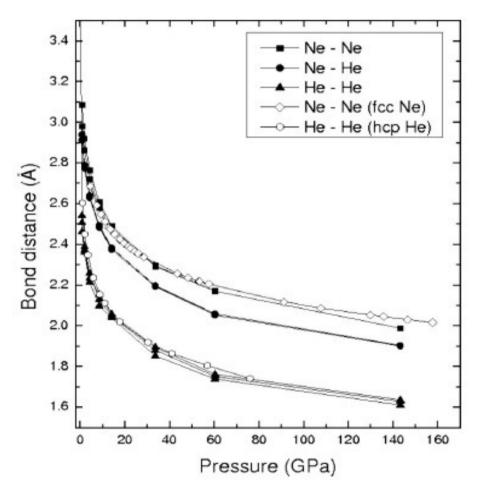


FIG. 3. Top: enthalpy energy difference, ΔH , between the MgZn₂, MgCu₂, and MgNi₂ Laves phases of Ne(He)₂ at zero temperature and as a function of pressure. The vertical solid line at 12 GPa separates the low pressure from the intermediate and high-pressure regimes. Uncertainties associated to ΔH amount to 0.1 meV/atom. Bottom: equation of state of Ne(He)₂ in the MgZn₂ phase structure calculated at *T*=0 and 296 K (uncertainties associated to the zero-temperature case are represented with vertical dashed lines). Experimental data and previous zero-temperature calculations of solid ⁴He in the hcp crystal phase are shown for comparison.

 $Ne(He)_{2}$ is a good hydrostatic PTM



He-He and Ne-Ne sublattices seem not to interact with each other

FIG. 4. Pressure-induced variation of atomic He-He, He-Ne, and Ne-Ne bond distances in the Ne(He)₂ crystal (MgZn₂ structure). Evolution of atomic bond distances in pure ⁴He and Ne bulk systems are shown for comparison.

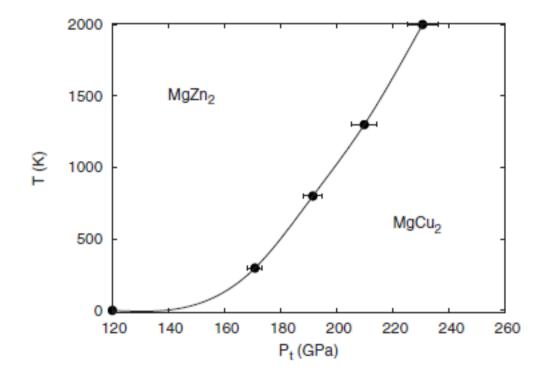


FIG. 5. Calculated $MgZn_2 \rightarrow MgCu_2$ phase boundary in Ne(He)₂ as a function of temperature. The solid line is a guide for the eye which connects the points of the solid-solid phase boundary explicitly calculated (solid circles). Uncertainties associated to our calculations are shown in the plot with horizontal solid lines.

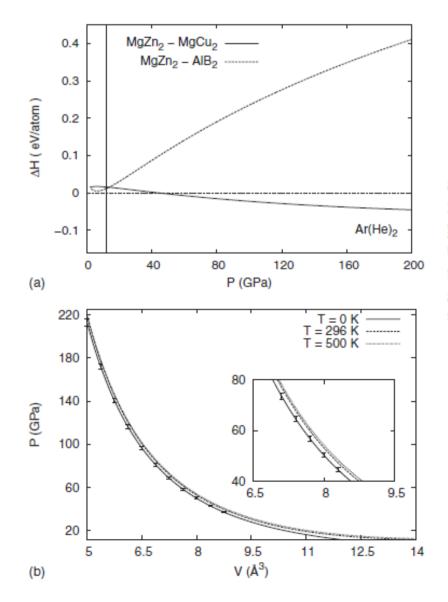


FIG. 8. Top: enthalpy difference between the MgZn₂-, MgCu₂-, and AlB₂-type phase structures of Ar(He)₂ under pressure and at zero temperature. The vertical solid line at 12 GPa separates the low pressure from the intermediate- and high-pressure regimes. Uncertainties associated to ΔH amount to 0.1 meV/atom. Bottom: equation of state of Ar(He)₂ in the AlB₂-type phase structure calculated at different temperatures. Uncertainties associated to the zerotemperature case are represented with solid vertical lines.

 $Ar(He)_{2}$ compound

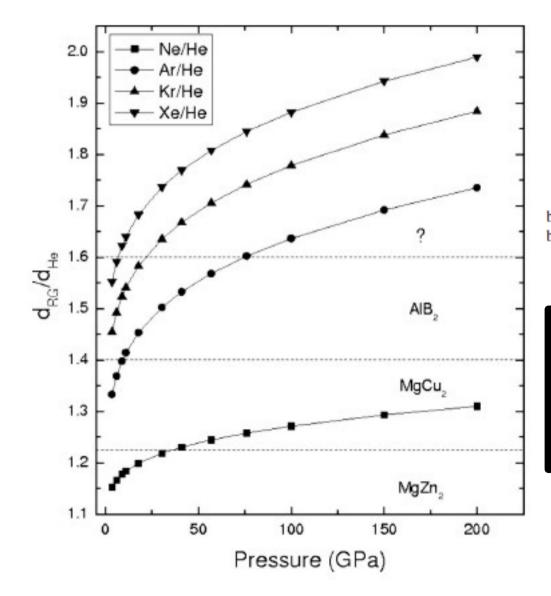
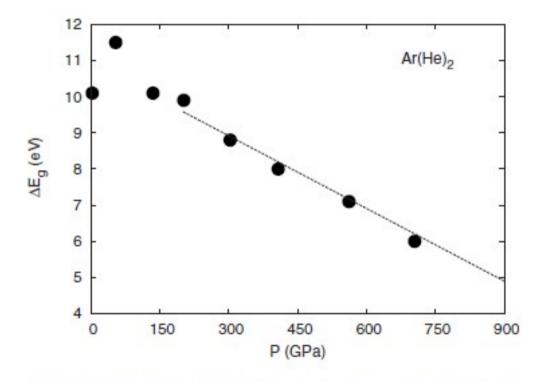


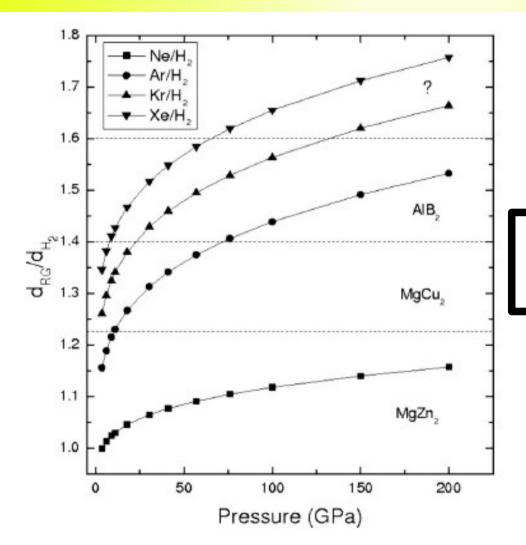
FIG. 11. Zero-temperature qualitative high-*P* phase diagram of binary RG-He alloys under pressure based on structural data and bond-distance ratio arguments.

Geometry and space-filling arguments seem reliable for predicting properties of RGs mixtures under pressure



Chemical precompression of ⁴He by other RGs appears to reduce its corresponding metallization pressure

FIG. 13. Evolution of the electronic-band gap of $Ar(He)_2$ in the AlB₂-type phase structure with pressure. The metallization pressure of helium in such compound is estimated to be of order $P_{metal} \sim 1630$ GPa.



Do the same arguments apply to $RG(H_2)_2$ mixtures?

FIG. 14. Zero-temperature qualitative high-*P* phase diagram of binary RG-H₂ alloys under pressure based on existing experimental data and atomic size-ratio arguments.

VOLUME 72, NUMBER 9

PHYSICAL REVIEW LETTERS

28 FEBRUARY 1994

Compression of Ar(H₂)₂ up to 175 GPa: A New Path for the Dissociation of Molecular Hydrogen?

Paul Loubeyre, René Letoullec, and Jean-Pierre Pinceaux

Physique des Milieux Condensés, Université Paris 6, boite 77, 4 place Jussieu 75252 Paris, France (Received 2 November 1992; revised manuscript received 1 June 1993)

Optical observations, Raman scattering, and single-crystal synchrotron x-ray measurements demonstrate the stability of a new stoichiometric compound, $Ar(H_2)_2$. This is a Laves phase with a hexagonal structure isomorphous to MgZn₂. A first order phase transition, which is associated with the sudden disappearance of the vibron and a visual increase absorbance of the sample, was observed around 175 GPa in three different experiments, two on $Ar(H_2)_2$ and one on $Ar(D_2)_2$. Optical absorption measurements up to 200 GPa in $Ar(D_2)_2$ have revealed the onset of a possible Drude type metallic behavior above the transition.

C. Cazorla and D. Errandonea, to be published (2009)

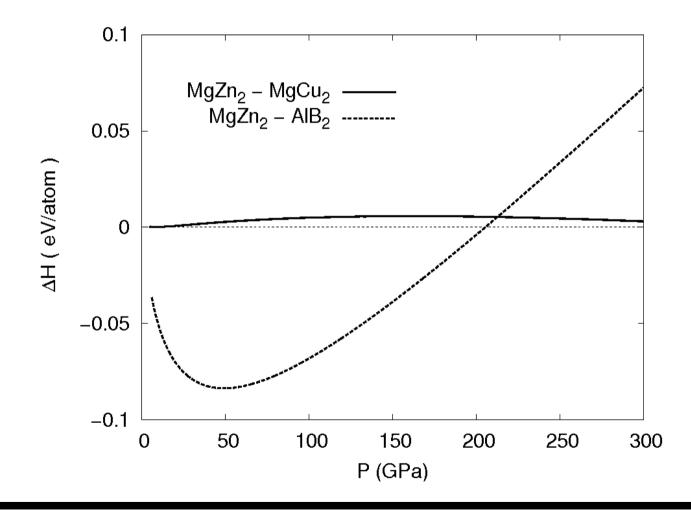
Methodology:

- * DFT (LDA & GGA)
- * Quasi-Harmonic Approximation (QH)

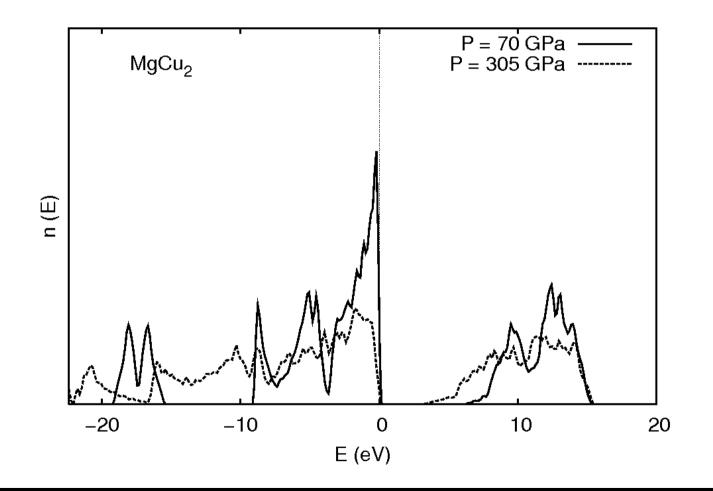
$$F_{\text{harm}}(V,T) = \frac{1}{N_{q}} k_{B} T \sum_{q,s} \ln \left\{ 2 \sinh \left[\frac{\hbar \omega_{qs}(V,T)}{2k_{B}T} \right] \right\}.$$

* Ab initio molecular dynamics simulations (AIMD)

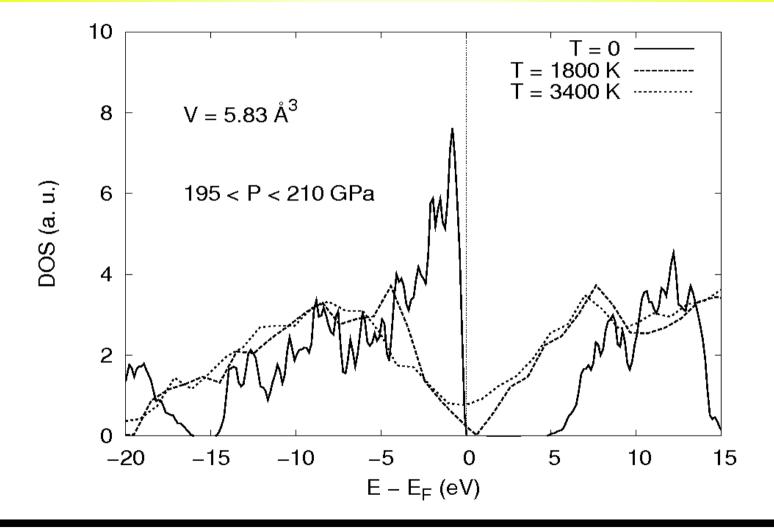
C. Cazorla and D. Errandonea, to be published (2009)



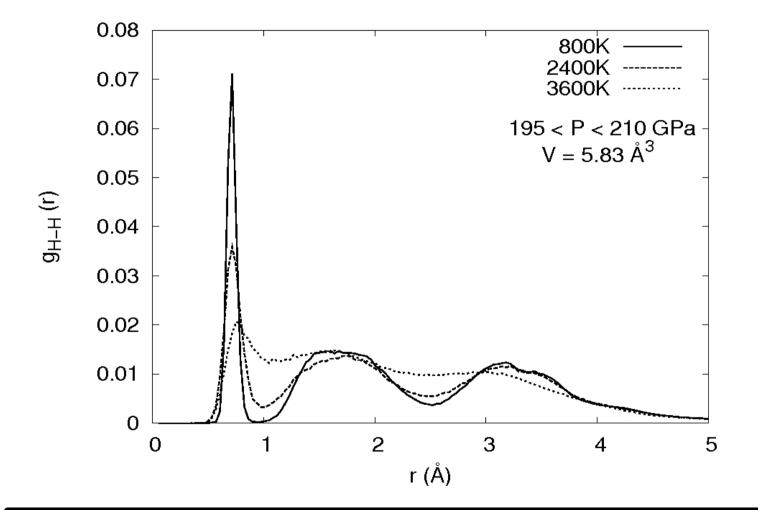
The MgCu₂ Laves structure is energetically competitive



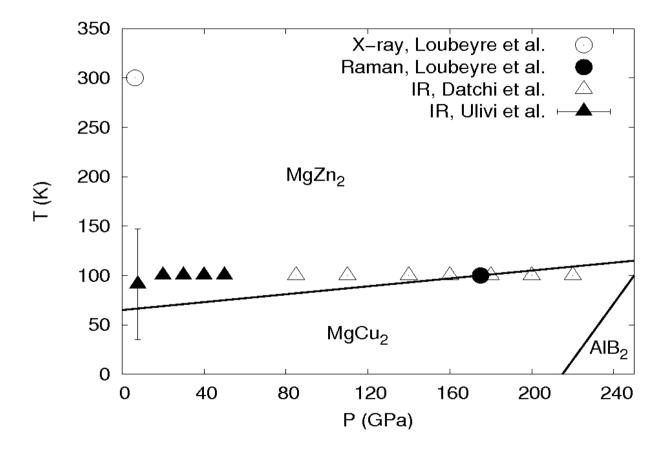
Chemically induced metallization of H₂ not below P~400 GPa



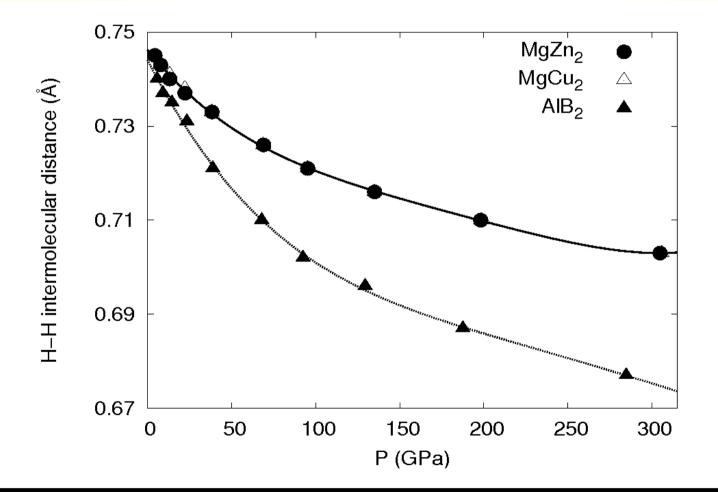
H₂ metallization might be induced by disorder and high T



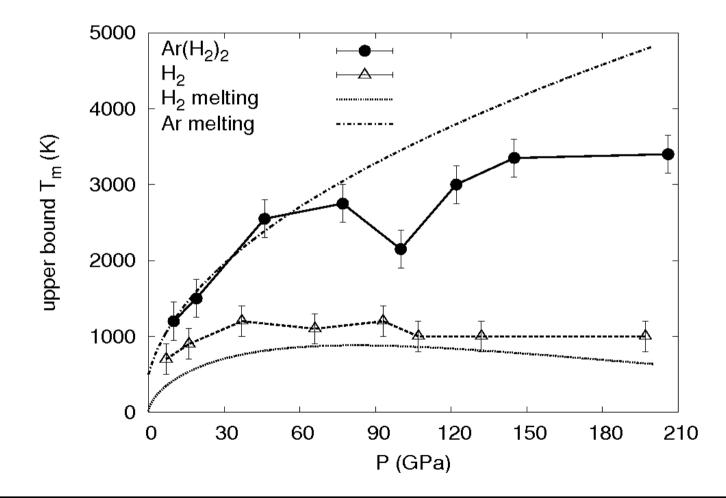
H₂ metallization might be induced by disorder and high T



Experimental controversy could be resolved by $MgZn_2 \rightarrow MgCu_2$



Vibron frequencies in the $MgZn_2$ and $MgCu_2$ phases are similar



A novel melting behaviour for A(heavy)-B(light) compounds?

RGs and mixtures : Conclusions

- * RGs and mixtures are not as simple systems as naively thought once temperature is lowered and/or pressure applied, theoretical treatment is challenging!
- * Mixtures of RGs are interesting systems from a crystallographic and materials physics points of view
- * Mixtures of RGs with H_2 are interesting systems for astronomy, crystallography and materials physics areas
- * By studying the Ar(H₂)₂ system probably we have unravelled a new type of melting behaviour under P that can be present in other A(heavy)-B(light) compounds

Acknowledgements

Politechnical University of Catalonia (UPC -Spain-):

- Jordi Boronat
- Joaquim Casulleras
- Gregory Astrakharchick

University College London (UCL -United Kingdom-):

- Mike J Gillan
- Dario Alfe
- Ester Sola

University of Valencia (UV -Spain-):

- Daniel Errandonea