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Outline of This Talk
• Introduction:
 Why are ultracold dipolar gases interesting?
 What are they?
 How can they be realized experimentally?

• Three aspects of dipolar systems:
 Two-body scattering properties.
 DMC and MF-GP results: How to properly compare

results from microscopic many-body and mean-field
GP treatments?

 Mean-field results for double-well potential.

• Summary.



Why are Ultracold Dipolar Systems
Interesting?

 Anisotropic and long-range interactions.

 Study of chemistry in ultracold regime (e.g., determination of
molecule-molecule scattering lengths, fine-tuning of interaction
potentials,…).

 Sensitive probe of phenomena beyond the standard model of particle
physics.

 Free space or harmonic trap: Novel collapse mechanisms and phase
diagrams.

 Dipolar gas loaded into optical lattices: Realization of novel condensed
matter analogs.

 Quantum computing (polar molecule used as qubit).



Experimental Realization of Dipolar
Condensate in 2005: Atomic Chromium

• 52Cr ([Ar]3d54s1): Electron spin of 3, nuclear spin 0, composite boson.
• Magnetic moment of 6µB (six times larger than for alkali atoms).
• Still comparatively small magnetic interaction (factor of 36);

but isotropic s-wave interaction can be tuned to zero.

Sequence of time of flight images [Lahaye et al., PRL 101, 080401 (2008)]:
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Th.



Roadmap: Long-Range
and Anisotropic

• Two-body scattering:
 Anisotropy leads to coupling of (many) different partial waves (for

identical bosons: a00, a20, a02, a22,… finite but a40, a62,… zero).
 Identical bosons: even l only [exchange of two particles gives (-1)l].
 Long-range nature requires integrating out to large interparticle

distances.

• Many-body treatment:
 Quantum Monte Carlo approaches:

• Account for all correlations and lead (in principle) to exact results.
• DMC: Anisotropy needs to be build into guiding function.
• Homogeneous system: LR tail increases numerical complexity.

 Mean-field treatment:
• Integro-differential equation.
• Applicability requires: na00

3<<1, nrc
3<<1 (SR), nD*

3<<1 (LR).

Long-range 
potential Vdd:
d2 (1−3cos2θ) / r3

r

z

θ



Two-Body Scattering:
How to Get K-Matrix or Phase Shifts?

• V(r,θ) = VSR(r) = ∞ for r<rc and V(r,θ) = Vdd(r, θ) for r>rc.

• Separate off CM motion and express relative Hamiltonian
in terms of Ylm basis.

• Result is V(r), i.e., coupled radial SE.

• Define log derivative matrix y(r)=u’(r)/u(r).
• Then y’(r) = -[y(r)]2+Veff(r), where Veff includes potential,

angular momentum barrier and energy.

• Propagate y(r) to large r using Johnson algorithm and
match to J - N K, where Kll’=tan(δll’).

• Initial condition at r=rc: y diagonal matrix with yll=∞, i.e.,
large.

B.R. Johnson, J. Comput. Phys. 13, 445 (1973).



Scattering of Two Aligned Identical
Bosonic Point Dipoles

• LR interaction: d2 (1−3cos2θ) / r3.
• LR dipole length D* = md2/h2 (d: dipole moment).
• Short-range interaction: hard wall at b.
• Notable variation of a00 with D*/b!

z

θ
r

repulsive

attractiveD* << b
(SR dominated)

D* >> b
(LR dominated)

No s-wave 
bound states

One s-wave 
bound state

Two s-wave 
bound states



Scattering Lengths for Two Aligned
Identical Bosonic Point Dipoles

Scattering length all’ for
each partial wave:

all’=limk→0 −tan[δll’(k)]/k

all’ constant as E→0.

a00 depends on SR and LR
part of potential.

all’ ∝ D* for l,l’ > 0 (except
near resonance).

[dipole length D* = µd2/h2.
SR cutoff rc=b]

Tuning SR or LR physics.

Two types of resonances. Why?



Rationalizing the Results of Coupled
Channel Calculation

• Why are all’ (l or l’>0, |l-l’|=0,2) away from resonance proportional
to D*?
 First Born approximation applied to Vdd alone (r=0 to ∞) gives

all’ ∝ D*.
 Corrections due to starting at r=rc as opposed to r=0 scale with

(rc/D*)l+l’+1.
 Qualitatively, the finite angular momentum barrier suppresses

dependence on SR part of the potential.

• Why is s-wave scattering length a00 modified by long-range Vdd
potential?
 Naively: <00|Vdd|00> = 0, suggesting that there should be no

modification of a00 due to Vdd…
 However, the different partial wave channels are coupled at

r=rc and decouple only at much larger r.
 Thus, the 00 channel continues to accumulate phase for r>rc

through the coupling to 20 and 02 channels.



Understanding Resonances: Adiabatic
Potential Curves and WKB Phase

• Diagonalizing Hamiltonian in
angular momentum basis for
fixed r determines adiabatic
potential curves.

• Neglecting coupling/adiabatic
correction, WKB phases φi give
good prediction for resonance
positions.
Look for φi/π = integer, where
φi = ∫cl. allowed [2µVi(r)/h2]1/2 dr.

see Ticknor and Bohn, PRA 72, 032717 (2005); 
Roudnev and Cavagnero, arXiv:0806.1982.

φ0: lowest adiabatic 
curve only

Σi φi: phase due to all
other adiabatic curves

V0

V1

V2



WKB Prediction of Resonance
Positions for Two Identical Bosons

Kanjilal and Blume, PRA 78, 040703(R) (2008); see also Deb and You, PRA 64, 022717 (2001).

0 10 20 30 40

D*/rc

Crosses: Potential resonances.
No barrier in adiabatic potential curve → broad resonance.
WKB phase predicts resonance position accurately.

Squares: Shape resonances.
Barrier in adiabatic potential curves → narrow resonance.
WKB phase predicts number of resonances roughly correctly.



Finite-Range Pseudo-Potential For Two
Interacting Dipoles
• Pseudo-potential needs to account for dipole-dependent

s-wave scattering length [Yi and You, PRA 61, 041604 (2000)]:

• This pseudo-potential works because its scattering
amplitudes, calculated in the first Born approximation,
agree with the full scattering amplitudes of the model
potential.

s-wave scattering 
(determined by interplay
between SR and dipole

potential)

Mixing between 
different partial
waves (goes all
the way to zero)



Mean-Field Gross-Pitaevskii
Description of Dipolar Bose Gas

[ ]

Mean-field interaction:
contact s-wave (SR) + dipole-dipole (LR)

Compare with results from many-body Schroedinger
equation that uses model potential (hardwall + Vdd) as input.

Integro-differential equation solved following Ronen et al., PRA 74,
013623 (2006):
Take advantage of cylindrical symmetry and perform Fourier transform in
z and Hankel transform in ρ.



Spherical Confinement (N=10, b=0.0137aho):
GP versus Many-Body DMC Energies

GP:
a=a(d)

GP: a=b

Excellent
agreement
between GP and
DMC many-
body energies!

Validation of
mean-field
treatment!

s-wave induced
instability.

DMC

GP: a=a(d), LR=0 
(contact potential 
only)

increasing E-field / dipole moment

Bortolotti, Ronen, Bohn, Blume, PRL 97, 160402 (2006)

x



z

Size X=√<x2>
Size Z=√<z2>

DMC
GP,a(d)

GP, a(d).
LR part = 0
(isotropic).

Aspect ratio Z/X

Structural properties depend on dipole moment!

Spherical Confinement (N=10, b=0.0137aho):
Size and Aspect Ratio

Instability!

x



N=20, b=0.0137aho

Many-Body Variational Calculation:
Nature of the Mechanical Instability

N=20, b=0.0137aho.

Variational wave
function:
Ψ = ∏Φ(ri) ∏ϕ(rjk)

one-body
term:

exp[-(r2/2br
2)]

Parameter br: size.

two-body
term

Stability of dipolar Bose gas is due to “potential” barrier; 
collapse occurs when barrier disappears (→ s-wave Bose gas). 
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Using OH mass
and ν=1kHz.

Would be stable
even w/o trap,
a(d) > D*/12π 
[e.g., Eberlein et al., PRA 71, 
033618 (2005)].

Experiment for 
fixed N:
Sequence of 
stable and 
unstable regions. 

Field-Induced S-wave Collapse Within
GP Formalism: Stability Diagram

Bortolotti, Ronen, Bohn, Blume, PRL 97, 160402 (2006)



N=10: Tuning Interactions By Changing
Confining Potential

z

z

Non-interacting gas:
Spherical: (0.5+0.5+0.5)hν =1.5hν
Cigar: (0.5+0.5+0.05)hνρ =1.05hνρ
Pancake: (0.05+0.05+0.5)hνz =0.6hνz

DMC
GP

E/N first 
increases with 
increasing D*, 
and then 
decreases.

E/N increases
with increasing D*.

defined by largest
frequency



Double-Well Potential Along z-Direction
• Small λ:

• Analogy between two weakly-
coupled superconductors and
two-weakly-coupled BECs
(barrier ~ weak link).

• Josephson oscillation and
macroscopic quantum self-
trapping have been observed for
s-wave interactions (Oberthaler
group).

• Can they be observed for dipolar
Bose gas?

z

z: low
energy 
coordinate

• Large λ:

• Two “sheets” of dipoles:
 Interaction within each sheet

predominantly repulsive.
 Interaction between sheets

predominantly attractive.
 Interplay?

• Building up a lattice of pancake-
shaped dipolar gases.

z

z: high
energy 
coordinate



Mean-Field Gross-Pitaevskii
Description of Dipolar Bose Gas

[ ]

Mean-field interaction:
contact s-wave (SR) + dipole-dipole (LR) Vd=d2(1-3cos2θ)/r3

A=0, λ > 1: pancake-shape trap            A=0, λ < 1: cigar-shape trap
z

Effectively (more) repulsive

Effectively 
(more) attractive

z
θ

+  A exp(-0.5z2/b2) +

5 parameters: (N-1)a, λ, (N-1)d2, A, b. Here: Fix (N-1)a, b, A; vary λ, (N-1)d2.



MF-GP Treatment of Pure Dipolar BEC
in Double-Well Trap

z z

(Symmetry-
preserving) (Unstable)

Transition from
symmetry-
preserving (S) to
symmetry-
breaking (SB) is
driven by mean-
field interaction.

“Phase diagram” based on stationary solutions of GP equation 
(A=12Ez, b=0.2az, as=0): 

Add particles
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D = d2(N-1) / (Ez az
3)

For Cr and νz=10Hz: D=1 → N~1800 



Ground State GP Densities for Aspect
Ratio λ=0.3

(a) (b)

Asad-uz-Zaman and Blume, PRA 80, 053622
(2009).
For a related study, see
Xiong, Gong, Pu, Bao, Li, Phys. Rev. A (2009)
[this study tunes dipole-dipole interactions
by changing axis along which dipoles are
aligned]



Excitation Frequencies for Aspect
Ratio λ=0.3

Bogoliubov de Gennes excitation spectrum:

m=0

m=1

ω2 is neg.
(unstable mode)

Lowest m=0 eigenmode:
Population transfer between L and R well
(BdG frequency is nearly identical to Josephson oscillation frequency
obtained by time evolving initial state with small population imbalance)

Collapse is “triggered”
by m=0 mode.

Three distinct regimes 
as function of D:
i) Josephson oscillation.
ii) Self-trapping regime.
iii) Collapse.



Two-Mode Variational Description
• Ansatz: Ψ(ρ,z,t) = ψL(t)ΦL(ρ,z) + ψR(t)ΦR(ρ,z), where

ΦL,R (ρ,z) ∝ Φ+(ρ,z) ± Φ−(ρ,z)
(Φ+ and Φ− are stationary GP
solutions)

ψL,R(t) = √NL,R(t) exp[iθL,R(t)]

• Plugging ansatz into time-dependent GP equation and introducing
population difference Z(t), Z(t)=NL(t)-NR(t), and phase difference φ(t),
φ(t)=θR(t)-θL(t), leads to classical Hamiltonian that is governed by ratio
between “effective interaction energy (U-B)” to “tunneling energy (2T)”.

See, e.g., Smerzi et al., PRL 79, 4950 (1997).



Bogoliubov de Gennes versus
Two-Mode Model Prediction (λ=0.3)

Time-dep.
GP eq.Two-mode 

model

Improved two-
mode model

BdG
excitation
frequency

Two-mode model provides qualitative but not
quantitative description.
Overlap between amplitudes in left and right
well appreciable.

Improved two-
mode model
[Ananikian and
Bergeman, PRA 73,
013604 (2006)] does
not lead to
improvement.



Ground State Densities for Large
Aspect Ratio: λ=10

(c)     (d)

For A=0, “red blood 
cell” was predicted 
by Ronen et al., PRL 
98, 030406(2007):



“Angular Roton Instability”

k=2

k=0
k=1

k=3k=3

k=3

k=3

k=3

a,b c,d

BdG eigenmodes (density osc.):



Summary
• Aligned dipolar Cr Bose gases with long-range and anisotropic

interactions have been condensed.
• Huge progress toward condensing cold molecular sample with large

electric dipole moment.

• Two-dipole system shows interesting scattering properties that need
to be accounted for in comparisons between mean-field and many-
body calculations.

• Effective interactions of aligned dipolar Bose gas can be tuned
through variation of external confining potential.

• Rich stability and phase diagram as functions of dipole strength and
aspect ratio.

• There’s a lot more to do to fully uncover the physics of  dipolar
systems!


