Experimental image of rubidium condensate (courtesy of Engels' group at WSU) - What's different for dipoles?

Doerte Blume

Washington State University, Pullman.

Collaborators:

At WSU: Gabriel Hanna, Krittika Kanjilal, M. Asad-uz-Zaman, Kevin Daily,

Debraj Rakshit, Ryan Kalas, Kris Nyquist.

At JILA: Chris Greene, Javier von Stecher, Seth Rittenhouse, John Bohn, Shai Ronen, Danielle Bortolotti.

At BEC Center in Trento: Stefano Giorgini, Grigori Astrakharchik.

Supported by NSF and ARO.

Outline of This Talk

- Introduction:
 - Why are ultracold dipolar gases interesting?
 - What are they?
 - How can they be realized experimentally?
- Three aspects of dipolar systems:
 - Two-body scattering properties.
 - DMC and MF-GP results: How to properly compare results from microscopic many-body and mean-field GP treatments?
 - Mean-field results for double-well potential.
- Summary.

Why are Ultracold Dipolar Systems Interesting?

- Anisotropic and long-range interactions.
- Study of chemistry in ultracold regime (e.g., determination of molecule-molecule scattering lengths, fine-tuning of interaction potentials,...).
- Sensitive probe of phenomena beyond the standard model of particle physics.
- Free space or harmonic trap: Novel collapse mechanisms and phase diagrams.
- Dipolar gas loaded into optical lattices: Realization of novel condensed matter analogs.
- Quantum computing (polar molecule used as qubit).

Experimental Realization of Dipolar Condensate in 2005: Atomic Chromium

- ⁵²Cr ([Ar]3d⁵4s¹): Electron spin of 3, nuclear spin 0, composite boson.
- Magnetic moment of $6\mu_B$ (six times larger than for alkali atoms).
- Still comparatively small magnetic interaction (factor of 36); but isotropic s-wave interaction can be tuned to zero.

Sequence of time of flight images [Lahaye et al., PRL 101, 080401 (2008)]:

Roadmap: Long-Range and Anisotropic

- Two-body scattering:
 - Anisotropy leads to coupling of (many) different partial waves (for identical bosons: a₀₀, a₂₀, a₀₂, a₂₂,... finite but a₄₀, a₆₂,... zero).
 - Identical bosons: even I only [exchange of two particles gives (-1)^I].
 - Long-range nature requires integrating out to large interparticle distances.
- Many-body treatment:
 - Quantum Monte Carlo approaches:
 - Account for all correlations and lead (in principle) to exact results.
 - DMC: Anisotropy needs to be build into guiding function.
 - Homogeneous system: LR tail increases numerical complexity.

Mean-field treatment:

- Integro-differential equation.
- Applicability requires: $na_{00}^{3} << 1$, $nr_{c}^{3} << 1$ (SR), $nD_{*}^{3} << 1$ (LR).

Two-Body Scattering: How to Get K-Matrix or Phase Shifts?

• $V(r,\theta) = V_{SR}(r) = \infty$ for $r < r_c$ and $V(r,\theta) = V_{dd}(r, \theta)$ for $r > r_c$.

- Separate off CM motion and express relative Hamiltonian in terms of Y_{Im} basis.
- Result is <u>V(r)</u>, i.e., coupled radial SE.
- Define log derivative matrix <u>y(r)=u'(r)/u(r)</u>.
- Then $\underline{y}'(r) = -[\underline{y}(r)]^2 + \underline{V}_{eff}(r)$, where \underline{V}_{eff} includes potential, angular momentum barrier and energy.
- Propagate <u>y</u>(r) to large r using Johnson algorithm and match to <u>J</u> - <u>N</u> <u>K</u>, where K_{II}^{*}=tan(δ_{II}^{*}).
- Initial condition at r=r_c: y diagonal matrix with y_{II}=∞, i.e., large.

B.R. Johnson, J. Comput. Phys. 13, 445 (1973).

Scattering of Two Aligned Identical Bosonic Point Dipoles

Ζ

θ

- LR interaction: $d^2 (1-3\cos^2\theta) / r^3$.
- LR dipole length $D_* = md^2/\hbar^2$ (d: dipole moment).
- Short-range interaction: hard wall at b.
- Notable variation of a₀₀ with D_{*}/b!

Scattering Lengths for Two Aligned Identical Bosonic Point Dipoles

Scattering length a_{II}, for each partial wave:

 $a_{II'}=lim_{k\rightarrow 0}$ –tan[$\delta_{II'}(k)$]/k

 a_{II} , constant as $E \rightarrow 0$.

a₀₀ depends on SR and LR part of potential.

 $a_{II'} \propto D_*$ for I,I' > 0 (except near resonance).

[dipole length $D_* = \mu d^2/\hbar^2$. SR cutoff $r_c=b$]

Tuning SR or LR physics.

Rationalizing the Results of Coupled Channel Calculation

- Why are a_{II}, (I or I'>0, |I-I'|=0,2) away from resonance proportional to D_{*}?
 - First Born approximation applied to V_{dd} alone (r=0 to ∞) gives a_{II}, ∝ D_{*}.
 - Corrections due to starting at r=r_c as opposed to r=0 scale with (r_c/D_{*})^{I+I'+1}.
 - Qualitatively, the finite angular momentum barrier suppresses dependence on SR part of the potential.
- Why is s-wave scattering length a₀₀ modified by long-range V_{dd} potential?
 - Naively: <00|V_{dd}|00> = 0, suggesting that there should be no modification of a₀₀ due to V_{dd}...
 - However, the different partial wave channels are coupled at r=r_c and decouple only at much larger r.
 - Thus, the 00 channel continues to accumulate phase for r>r_c through the coupling to 20 and 02 channels.

Understanding Resonances: Adiabatic Potential Curves and WKB Phase

 Diagonalizing Hamiltonian in angular momentum basis for fixed r determines adiabatic potential curves.

 Neglecting coupling/adiabatic correction, WKB phases φ_i give good prediction for resonance positions.

Look for ϕ_i/π = integer, where $\phi_i = \int_{cl. allowed} [2\mu V_i(r)/\hbar^2]^{1/2} dr.$

see Ticknor and Bohn, PRA 72, 032717 (2005); Roudnev and Cavagnero, arXiv:0806.1982.

WKB Prediction of Resonance Positions for Two Identical Bosons

Crosses: Potential resonances.

No barrier in adiabatic potential curve → broad resonance. WKB phase predicts resonance position accurately.

Squares: Shape resonances. Barrier in adiabatic potential curves → narrow resonance. WKB phase predicts number of resonances roughly correctly.

Kanjilal and Blume, PRA 78, 040703(R) (2008); see also Deb and You, PRA 64, 022717 (2001).

Finite-Range Pseudo-Potential For Two Interacting Dipoles

 Pseudo-potential needs to account for dipole-dependent s-wave scattering length [Yi and You, PRA 61, 041604 (2000)]:

 This pseudo-potential works because its scattering amplitudes, calculated in the first Born approximation, agree with the full scattering amplitudes of the model potential.

Mean-Field Gross-Pitaevskii Description of Dipolar Bose Gas

Integro-differential equation solved following Ronen et al., PRA 74, 013623 (2006): Take advantage of cylindrical symmetry and perform Fourier transform in z and Hankel transform in ρ .

Compare with results from many-body Schroedinger equation that uses model potential (hardwall + V_{dd}) as input.

Spherical Confinement (N=10, b=0.0137a_{ho}): GP versus Many-Body DMC Energies

Excellent agreement between GP and DMC manybody energies!

Validation of mean-field treatment!

s-wave induced instability.

Spherical Confinement (N=10, b=0.0137a_{ho}): Size and Aspect Ratio

Structural properties depend on dipole moment!

Many-Body Variational Calculation: Nature of the Mechanical Instability

Stability of dipolar Bose gas is due to "potential" barrier; collapse occurs when barrier disappears (\rightarrow s-wave Bose gas).

Field-Induced S-wave Collapse Within GP Formalism: Stability Diagram

N=10: Tuning Interactions By Changing Confining Potential

Double-Well Potential Along z-Direction

- Large λ: z: high energy coordinate
- Two "sheets" of dipoles:
 - Interaction within each sheet predominantly repulsive.
 - Interaction between sheets predominantly attractive.
 - Interplay?
- Building up a lattice of pancakeshaped dipolar gases.

- Analogy between two weaklycoupled superconductors and two-weakly-coupled BECs (barrier ~ weak link).
- Josephson oscillation and macroscopic quantum selftrapping have been observed for s-wave interactions (Oberthaler group).
- Can they be observed for dipolar Bose gas?

Mean-Field Gross-Pitaevskii Description of Dipolar Bose Gas

5 parameters: (N-1)a, λ , (N-1)d², A, b. Here: Fix (N-1)a, b, A; vary λ , (N-1)d².

MF-GP Treatment of Pure Dipolar BEC in Double-Well Trap

"Phase diagram" based on stationary solutions of GP equation $(A=12E_z, b=0.2a_z, a_s=0)$:

Ground State GP Densities for Aspect Ratio λ =0.3

Asad-uz-Zaman and Blume, PRA 80, 053622 (2009).

For a related study, see

Xiong, Gong, Pu, Bao, Li, Phys. Rev. A (2009) [this study tunes dipole-dipole interactions by changing axis along which dipoles are aligned]

Excitation Frequencies for Aspect Ratio λ =0.3

Bogoliubov de Gennes excitation spectrum:

Population transfer between L and R well

(BdG frequency is nearly identical to Josephson oscillation frequency obtained by time evolving initial state with small population imbalance)

Two-Mode Variational Description

• Ansatz: $\Psi(\rho, z, t) = \psi_L(t)\Phi_L(\rho, z) + \psi_R(t)\Phi_R(\rho, z)$, where

 $\Phi_{L,R}(\rho,z) \propto \Phi_{+}(\rho,z) \pm \Phi_{-}(\rho,z)$ (Φ_{+} and Φ_{-} are stationary GP solutions)

 $\psi_{L,R}(t) = \sqrt{N_{L,R}(t)} \exp[i\theta_{L,R}(t)]$

Plugging ansatz into time-dependent GP equation and introducing population difference Z(t), Z(t)=N_L(t)-N_R(t), and phase difference φ(t), φ(t)=θ_R(t)-θ_L(t), leads to classical Hamiltonian that is governed by ratio between "effective interaction energy (U-B)" to "tunneling energy (2T)".

See, e.g., Smerzi et al., PRL 79, 4950 (1997).

Bogoliubov de Gennes versus Two-Mode Model Prediction (λ =0.3)

 $\Phi_{L,R}(z) / a_z^{-}$

-2

z / a_

-4

Two-mode model provides qualitative but not quantitative description.

Overlap between amplitudes in left and right well appreciable.

Ground State Densities for Large Aspect Ratio: λ =10

Summary

- Aligned dipolar Cr Bose gases with long-range and anisotropic interactions have been condensed.
- Huge progress toward condensing cold molecular sample with large electric dipole moment.
- Two-dipole system shows interesting scattering properties that need to be accounted for in comparisons between mean-field and manybody calculations.
- Effective interactions of aligned dipolar Bose gas can be tuned through variation of external confining potential.
- Rich stability and phase diagram as functions of dipole strength and aspect ratio.
- There's a lot more to do to fully uncover the physics of dipolar systems!