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Outli f This Tall

* Introduction:
= Why are ultracold dipolar gases interesting?
= What are they?

= How can they be realized experimentally?

* Three aspects of dipolar systems:
* Two-body scattering properties.

= DMC and MF-GP results: How to properly compare
results from microscopic many-body and mean-field
GP treatments?

= Mean-field results for double-well potential.

° Summary.



Why are Ultracold Dipolar Systems
Interesting?

Anisotropic and long-range interactions.

Study of chemistry in ultracold regime (e.g., determination of
molecule-molecule scattering lengths, fine-tuning of interaction
potentials,...).

Sensitive probe of phenomena beyond the standard model of particle
physics.

Free space or harmonic trap: Novel collapse mechanisms and phase
diagrams.

Dipolar gas loaded into optical lattices: Realization of novel condensed
matter analogs.

Quantum computing (polar molecule used as qubit).



Experimental Realization of Dipolar

* 52Cr ([Ar]3d>4s'): Electron spin of 3, nuclear spin 0, composite boson.
* Magnetic moment of 6ug (six times larger than for alkali atoms).

* Still comparatively small magnetic interaction (factor of 36);
but isotropic s-wave interaction can be tuned to zero.

Sequence of time of flight images [Lahaye et al., PRL 101, 080401 (2008)]:
0 ms 0.1 ms 0.2 ms 0.3 ms 04 ms 0.5 ms
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Roadmap: Long-Range | ... .ange A

and Anisotropic potential V,:

d?(1-3cos?0) / r?

* Two-body scattering:

= Anisotropy leads to coupling of (many) different partial waves (for
identical bosons: a,,, a,,, a,,, a,,,-.. finite but a,,, a,,,... zero).

= |dentical bosons: even | only [exchange of two particles gives (-1)'].

= Long-range nature requires integrating out to large interparticle
distances.

°* Many-body treatment:

= Quantum Monte Carlo approaches:
« Account for all correlations and lead (in principle) to exact results.
« DMC: Anisotropy needs to be build into guiding function.
- Homogeneous system: LR tail increases numerical complexity.

= Mean-field treatment:
* Integro-differential equation.
- Applicability requires: na,,3<<1, nr3<<1 (SR), nD.3<<1 (LR).



Two-Body Scattering:

* V(r,8) = Vgg(r) = o for r<r, and V(r,0) = V4(r, 0) for r>r..

* Separate off CM motion and express relative Hamiltonian
in terms of Y, basis.

* Result is V(r), i.e., coupled radial SE.

* Define log derivative matrix y(r)=u’(r)/u(r).

* Then y’(r) = -[y(r)]?+V «(r), where V includes potential,
angular momentum barrier and energy.

* Propagate y(r) to large r using Johnson algorithm and
match to J - N K, where K =tan(;).

* Initial condition at r=r_: y diagonal matrix with y,=x, i.e.,

large.
B.R. Johnson, J. Comput. Phys. 13, 445 (1973).



Scattering of Two Aligned Identical

Bosonic Point Dipoles

* LR interaction: d?(1-3cos?20) / r3. AZ
* LR dipole length D. = md?/h? (d: dipole moment).
* Short-range interaction: hard wall at b. 0

* Notable variation of a,, with D./b!
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Scattering Lengths for Two Aligned

Two types of resonances. Why?  Scattering length a;; for
I |'| I 1

200 | | each partial wave:
= _ .
-200 a,, constant as E—0.
o 0 -
S a,, depends on SR and LR
wc?] part of potential.
5 |
0 | : ; : ; a,r « D. for I,I’ > 0 (except
near resonance).
;_‘O
N -2F 7 [dipole length D. = nd2/h?2.
< { SR cutoff r_=b]
_ 1 I | | | |
% 10 20 30 40

D,I‘/rC Tuning SR or LR physics.



Rationalizing the Results of Coupled

Channel Calculation

* Why are a (I or I’>0, |I-I’|=0,2) away from resonance proportional
to D.?
= First Born approximation applied to V,, alone (r=0 to «) gives
a"! m D*-

= Corrections due to starting at r=r_ as opposed to r=0 scale with
(r /D)1,

= Qualitatively, the finite angular momentum barrier suppresses
dependence on SR part of the potential.

* Why is s-wave scattering length a,, modified by long-range V

potential?

= Naively: <00|V,4|00> = 0, suggesting that there should be no
modification of a,, due to V...

= However, the different partial wave channels are coupled at
r=r. and decouple only at much larger r.

= Thus, the 00 channel continues to accumulate phase for r>r,
through the coupling to 20 and 02 channels.



Understanding Resonances: Adiabatic

Potential Curves and WKB Phase

* Diagonalizing Hamiltonian in > A AR AL L
- = 2e+05F .
angular momentum basis for — ! i
fixed r determines adiabatic —_ o Vi v -
pOtentlaI curves. ; -26+05 —l | llﬂ'l || Illll | L1 11 IIT
01 0.1 |
r/a
ho
* Neglecting coupling/adiabatic 6

correction, WKB phases ¢, give
good prediction for resonance
positions.

Look for ¢,/ = integer, where

bhase / pi
v

-

|
& = Jo1. allowea [2UV{(r)/A2]72 dr. 0 0.05 0.1
D,/ a,
10
see Ticknor and Bohn, PRA 72, 032717 (2005); 2, ¢;: phase due to all

Roudnev and Cavagnero, arXiv:0806.1982. other adiabatic curves



WKB Prediction of Resonance

Positions for Two Identical Bosons

X

40

D./r,

Crosses: Potential resonances.
No barrier in adiabatic potential curve — broad resonance.

WKB phase predicts resonance position accurately.

Squares: Shape resonances.
Barrier in adiabatic potential curves — narrow resonance.

WKB phase predicts number of resonances roughly correctly.

Kanjilal and Blume, PRA 78, 040703(R) (2008); see also Deb and You, PRA 64, 022717 (2001).



Finite-Range Pseudo-Potential For Two

Interacting Dioo|

* Pseudo-potential needs to account for dipole-dependent
s-wave scattering length [Yi and You, PRA 61, 041604 (2000)]:

e e {mh? (i dl-,, l—fun\ i/
V(r.r) : OF — ) + d* —
| 111 P — |3
\ J J
Y Y

s-wave scattering Mixing between
(determined by interplay different partial
between SR and dipole  waves (goes all

potential) the way to zero)

* This pseudo-potential works because its scattering
amplitudes, calculated in the first Born approximation,
agree with the full scattering amplitudes of the model
potential.



Mean-Field Gross-Pitaevskii

Description of Dipolar Bose Gas

L oY(r, 1) h? M w?
Ry [ oM 7 %)

O = DTy o + [Vt = el o e

Mean-field interaction:
contact s-wave (SR) + dipole-dipole (LR)

Integro-differential equation solved following Ronen et al., PRA 74,
013623 (2006):

Take advantage of cylindrical symmetry and perform Fourier transform in
z and Hankel transform in p.

Compare with results from many-body Schroedinger
equation that uses model potential (hardwall + V) as input.



Spherical Confinement (N=10, b=0.0137a, ):

GP versus Many-Body DMC Energies

0.12

Bortol‘ftg. Ronen, Bohn, Blume, PRL 97, 160402 (2006)
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Excellent
agreement
between GP and
DMC many-
body energies!

Validation of
mean-field
treatment!

s-wave induced
instability.



Spherical Confinement (N=10, b=0.0137a, ):
Size and Aspect Ratio

~o
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Structural properties depend on dipole moment!



Many-Body Variational Calculation:

Nature of the Mechanical Instability
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Variational wave
function:

W = [0(r;) TTop(r)

I two-body

one-body term

term:
eXp[-(I'ZIZer)]

Parameter b,: size.

Stability of dipolar Bose gas is due to “potential” barrier;
collapse occurs when barrier disappears (— s-wave Bose gas).



Field-Induced S-wave Collapse Within
GP Formalism: Stability Diagram

Bortolotti, Ronen, Bohn, Blume, PRL 97, 160402 (2006) Using OH mass

Dipole moment (Debye)4«— andv=1kHz.
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N=10: Tuning Interactions By Changing

Confining Potential

11l ——Cigar
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* Large A: * Small A:
z: high z: low
energy energy
coordinate coordinate
* Two “sheets” of dipoles: * Analogy between two weakly-
= Interaction within each sheet coupled superconductors and
predominantly repulsive. two-v_veakly-coupled BECs
= Interaction between sheets (barrier ~ weak link).
predominantly attractive. * Josephson oscillation and
* Interplay? macroscopic quantum self-
* Building up a lattice of pancake- trapping have been observed for
shaped dipolar gases. s-wave interactions (Oberthaler
group).
* Can they be observed for dipolar
Bose gas?



Mean-Field Gross-Pitaevskii @T
Deccrntion st DR

d(r, t h? M w?
ih ‘/’;’; ) _ [— mV2 - E(p? + A%2%) + Aexp(-0.57%/b%) +

O = DTy o + [Vt = el o e

Mean-field interaction:
contact s-wave (SR) + dipole-dipole (LR) V ,=d?(1-3cos?0)/r3

A=0, A > 1: pancake-shape trap A=0, A < 1: cigar-shape trap

m? T T TT T/v T TTTT Effectively
| : T (more) attractive

Effectively (more) repulsive

5 parameters: (N-1)a, A, (N-1)d?, A, b. Here: Fix (N-1)a, b, A; vary A, (N-1)d>2.



MF-GP Treatment of Pure Dipolar BEC

In Double-Well Trap

“Phase diagram” based on stationary solutions of GP equation

(A=12E,, b=0.2a,, a_=0):
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Ground State GP Densities for Aspect

Ratio A=0.3_
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Excitation Frequencies for Aspect
Ratio A=0.3

Bogoliubov de Gennes excitation spectrum:

! Three distinct regimes
. 1 as function of D:

T i) Josephson oscillation.
if) Self-trapping regime.

ili) Collapse.
D < 1 2
w’isneg. D t _ _
(unstable mode) Collapse is “triggered”
< > by m=0 mode.

Lowest m=0 eigenmode:

Population transfer between L and R well

(BdG frequency is nearly identical to Josephson oscillation frequency
obtained by time evolving initial state with small population imbalance)



Two-Mode Variational Descripti

* Ansatz: ¥(p,z,t) = ¢, (1)@, (p,2) + Yr(t)Pr(p,z), where

(I)L,R (p,Z) x (I)+(p,Z) = (I)_(p,Z) 4r \\\
(®, and ®_ are stationary GP -
solutions) =l |
=
P r(t) = VN R(t) exp[i6 z(t)] = \
q 20 > 4
z/a

* Plugging ansatz into time-dependent GP equation and introducing
population difference Z(t), Z(t)=N(t)-N(t), and phase difference ¢(t),
d(t)=06x(t)-0,(t), leads to classical Hamiltonian that is governed by ratio
between “effective interaction energy (U-B)” to “tunneling energy (2T)”.

See, e.g., Smerzi et al., PRL 79, 4950 (1997).




Bogoliubov de Gennes versus

Two-Mode Model Prediction (A=0.3)

'5\
\\
—~—

5"004fF  BdG

excitation
frequency

O a a a 1

- —— L .
- —
‘.

- e

Improved two- |
~ < mode model

~
Two-mode™_ '~
model

0 04

03

D

Two-mode model provides qualitative but not

quantitative description.

Overlap between amplitudes in left and right

well appreciable.

| Improved two-
mode model
[Ananikian and
Bergeman, PRA 73,
| 013604 (2006)] does
1 not lead to

improvement.




Ground State Densities for Large
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Summary

Aligned dipolar Cr Bose gases with long-range and anisotropic
interactions have been condensed.

Huge progress toward condensing cold molecular sample with large
electric dipole moment.

Two-dipole system shows interesting scattering properties that need
to be accounted for in comparisons between mean-field and many-
body calculations.

Effective interactions of aligned dipolar Bose gas can be tuned
through variation of external confining potential.

Rich stability and phase diagram as functions of dipole strength and
aspect ratio.

There’s a lot more to do to fully uncover the physics of dipolar
systems!



