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Outline of This Talk

 Introduction:
• Why mass-imbalanced Fermi gases?
• Open questions.

 Main part:
• Crossover and BEC regime.
• Results for three- and four-particle systems with
infinitely large s-wave scattering length.

• Homogeneous system.

 Summary



Why Fermi Mixtures With Unequal
Masses?

• On the theory side:
 Analogies with spin-imbalanced system.
 At the mean-field level: “nothing new” (equations for

equal masses rewritten in terms of reduced mass).
 For mass ratios κ>13.607, three-body parameter is

needed: Efimov physics.
 Previous MC studies suggest existence of bound states

or instability for κ<13.607: ZR versus FR?

• Experiments are gearing up:
 Fermi-Fermi mixture: 40K/6Li (κ≈6.7), 87Sr/6Li (κ≈14.5),

Yb/6Li (κ≈30), Yb/40K (κ≈4.5),…
 Fermi-Bose mixture (one light particle): 87Sr/7Li (κ≈12.4)



Why Fermi Mixtures With Unequal
Masses? Specific Questions.
• Quantify finite-range effects:
 Why?

• Realistic atom-atom interactions have finite range.
• Some numerical approaches only applicable to FR

interactions.
 How?

• For N=3, comparison of energetics obtained for ZR
interactions (analytical) and FR interactions (numerical).

• For N>3, numerical: SV approach and Monte Carlo.

• In the (universal?) ZR limit:
 Two-body versus three-body resonance.
 How does three-body resonance appear?
 Implications of three-body resonance for larger systems?



“Up/Heavy” - “Down/Light” Interaction:
Two-Body s-Wave Scattering Length
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Dilute gas:
r0 << aho, as or
n(0)r0

3 << 1.

We find: Need to
go to r0~0.001aho in
certain regimes.

For unequal masses: Use reduced mass in scattering problem.



BCS-BEC Crossover with Cold Two-
Component Atomic Fermi Gas: m1=m2
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“BCS” “BEC”
Weakly-attractive
atomic Fermi gas

Weakly-repulsive
molecular Bose 
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Strongly-
interacting
(unitarity)

Images (experiment): Jin group, JILA.

STABLE GAS!!! No bound trimers 
or tetramers.
aad=1.12as.
add=0.6as.

Crossover determined by as alone (one two-body parameter). 
Unitary and NI regime have same number of length scales.
For unequal masses: Do trimers or tetramers exist?
Do novel many-body phases exist?



Universal Energy Crossover Curve for
Trapped Fermi System

Universal energy crossover curve:

Nf: Number of unpaired fermions.
Nd: Number of dimers formed.

1hν
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N=4
L=0
m1=m2

For example, four
fermions per site in 
deep optical lattice.

von Stecher, Greene, Blume, 
PRA 76, 053613 (2007).
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N=3: Energy Crossover Curve for Mass
Ratios 1 and 4 (Equal Frequencies)
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von Stecher, Greene, Blume,
PRA 77, 043619 (2008).

Symbols: FN-DMC
with different
guiding functions.



m1=8m2

m2

x

density

m1=m2

m2

x

density

 Size of non-interacting system:

FN-DMC
(nodal surface
of ideal gas)

FN-DMC
(nodal surface
of dimer pairs)

SV

Crossover Curve for N=4: Different
Mass Ratios, Equal Frequencies

von Stecher, Greene, Blume,
PRA 76, 053613 (2007).



Determination of Dimer-Dimer
Scattering Length and Effective Range
• Perform full scattering calculation:
 Analytical treatment: ZR interactions (Petrov).
 Numerical treatment: FR interactions within hyperspherical

framework (Greene group).

• Our idea: Perform bound state calculations for four-fermion
system and, assuming formation of two composite bosonic
dimers, extract dimer-dimer phase shift through comparison
with analytically known two-particle solution for ZR
interactions.

• Analog of Luescher’s formula, which is often used in nuclear
theory (two particles in a box: relationship between phase
shift and eigenenergy).

• Extremely important for lattice QCD calculations.
M. Luescher, Nucl. Phys. B 354, 531 (1991); 364, 237 (1991).



Two s-Wave Interacting Particles in
External Spherically Harmonic Trap
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11/2
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Eni=(2n+3/2)hν

Eunit=(2n+1/2)hν

Eni=(2n+3/2)hν

Analytical treatment: Busch et al., Found. of Phys. (1998).

Fit four-body
energies to
three lowest 
two-body levels.

s



Dimer-Dimer Scattering Length and
Effective Range (4 Fermions=2 Bosons)

For large mass ratio, we
consider dimer-dimer
branch; other branches
exist...

rdd increases with
increasing mass ratio κ:
For κ=20, rdd~0.5add.

First quantitative prediction 
for dimer-dimer effective range.

Mass ratio κ

SV

FN-DMC

4 Fermions
2 Bosons

von Stecher, Greene, Blume, PRA 76, 053613 (2007).

Petrov et al., JPB 38, S645 (2005)

For κ>13.607, see also B. Marcelis et al., PRA 77, 032707 (2008).



From now on, Unitarity:
Hyperspherical Treatment of Trimer
• Exact separability.
• Relative (internal) wave function: Ψrel(R,Ω)=R-5/2F(R)Φ(Ω).
• Solution to hyperangular wave function gives ν:

• Defining ν = s-1/2 gives: ν(ν+1) = s2-1/4.
• For the three-body problem, s is known for all symmetries,

angular momenta and mass ratios.
• If we take s as given, then problem reduces to solving 1D

differential equation in effective hyperradial potential (in
this case, simple analytical form).



Hyperangular Solution (2 Heavy, 1
Light; ZR Interactions with as

-1=0)
Analytical solution for s [Efimov (1971); see also, e.g., Kartavtsev and
Malykh, JPB 40, 1429 (2007); Rittenhouse, Ph.D. thesis, CU Boulder
(2009)]:

LΠ=1-

LΠ=1−LΠ=3-
2+

0+

Beyond these mass ratios, s0 becomes purely imaginary.
Three-body parameter is needed → Efimov physics (for L=1 state, 13.607…).

L=1, as>0 and κ>8.172…: 1 three-body bound state exists in free space.

s 0
+1

s 0
+1



Effective Hyperradial Three-Particle
Potential Curves For LΠ=1-

1/2
1/4

1/10

s0=2

s 0
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V(R) = h2(s2-1/4)/(2µR2)+µω2R2/2

For κ=12.3131, we have s0=1/2: Just the usual isotropic HO?



Hyperradial Solution (s0=1/2 Example):
What to Keep and What to Eliminate?

• Want to solve: [-1/2F’’(x) + x2/2 F(x)] = εF(x); x=R/aho, ε=E/hν.
• Two linearly independent solutions (no BC specified yet):
 f(x) = A x exp[-x2/2] 1F1(-ε/2+3/4, 3/2, x2)
 g(x) = B exp[-x2/2] 1F1(-ε/2+1/4, 1/2, x2)

• Write: F(x) = f(x) cos(πµ) - g(x) sin(πµ).
• Take large x limit and constrain µ such that exp(x2/2) pieces

cancel.
• Consider small x limit and impose BC: F’(0)/F(0) = -aho/b.
• Of course: For NI isotropic HO, we have F(0)=0 and b=0.
• However: In our case, b cannot be determined within ZR

framework (b depends, in general, on two-body potential).
• If F(x) = f(x): E = Ef = (2n+3/2)hν = (2n+s0+1)hν.
• If F(x) = g(x): E = Eg = (2n+1/2)hν = (2n+s0)hν.

Borca, Blume, Greene, NJP 5 (2003).



Trapped Fermi-System (2 heavy, 1light)
with LΠ=1- at Unitarity: ZR vs. FR

Black symbols:
SV energies for
FR Gaussian
extrapolated to r0=0.

Away from κ=12.3131,
extrapolated FR
energies agree with
Ef.

κ=12.3131,
extrapolated FR
energy agrees with
Eg=hν/2.

Ef=(s0+1+2)hν

Ef=(s0+1)hν

κ=8.619 κ=13.606

The possibility of having a “three-body resonance” for 8.169< κ<13.606 (regular and 
irregular solution contribute) was pointed out by Nishida et al., PRL 100, 090405 (2008).



It’s not Numerics…
Convergence for Different Mass Ratios

κ=1

κ=6

κ=12

range r0~0.01aho



It’s not Numerics:
Add SR Repulsive Piece…

Mass ratio 12.5, L=1, first excited state with r0~0.0025aho.

Stable results!



Trapped Fermi-System (2 heavy,1 light)
with LΠ=1- at Unitarity: ZR vs. FR

ZR

FR Gaussian
extrapolated 
to r0=0

ZR, Ef

Symbols: basis 
set expansion.
Line: quadratic fit.

interaction range/
trap length=10-2 

interaction range/
trap length=10-1 

κ=1 Finite value of
interaction range
to trap length is
dealt with
straightforwardly.



Trapped Fermi-System (2 heavy,1 light)
with LΠ=1- at Unitarity: ZR vs. FR

κ=10κ=12

κ=12.3

κ=12.4

κ=12.5

Symbols: SV energies.
Red lines: Four to five parameter fits.

Bound states!
Diverge as r0

-2
.

Large FR 
effects!



Trapped Fermi-System (2 heavy,1 light)
with LΠ=1- at Unitarity: ZR vs. FR

κ=12.7

κ=12

Symbols: SV.

Lines: fit.

Horizontal 
lines: ZR 
energy Ef.

≈2hν



Four-Particle System (2 Heavy, 2 Light)
at Unitarity

N=4, L=1 energies nearly “parallel” to N=3, L=1 energies:
Indicative of universal physics?

N=4, L=0 and 2: No negative energy states up to κ=11.

κ=10
κ=8

κ=6

κ=4

L=1L=0

L=2
L=1

N=3,L=1



Polarized System: 3+1 and 4+1
• Whole range of interesting physics: polaron physics,

phase separation, etc. (see MIT and Rice experiments).
• Ground state of 3+1 and 4+1 system have unnatural

parity [Π=-(-1)L]: Need more general basis functions in
SV approach.

• κ=1: Comparison between SV and FN-DMC energies.

Zwierlein et al., 
Science 311, 492 (2006).



Preliminary Results: Four-Particle
System (3 heavy,1 light) with as

-1=0
FR energies
approach ZR
limit from below:
Extrapolated energy
will likely go up.

For comparison,
Joe Carlson and
coworkers find 
(unpublished):
(2,1): κcr=13.6
(3,1): κcr=10.5
(4,1): κcr=9.5

(2,1): LΠ=1-

(3,1): LΠ=1+



Implications of Few-Body Results for
Unequal Masses at Unitarity
• Finite range effects surprisingly large - had been

partially overlooked by some of our earlier studies at
unitarity and in BEC regime.

• E.g., need to double-check effective range of dimer-
dimer system.

• Three-body resonance realized *exactly* at s0=1/2
(κ=12.3131)?

• Implications for homogeneous system:
 Can some of previously unresolved results be

explained by FR effects?
 How to reach ZR limit?



E/N for Homogeneous System at
Unitarity: “SF versus Normal State”

Stability of normal state? 
Threebody or cluster 
states?

?

Mass ratio of 50!
SF state appears 
“numerically stable”!

State compatible with
superfluidity has lower
energy than normal state.

Unpublished FN-DMC results for NM=Nm by Astrakharchik, Blume 
and Giorgini (‘06/’07); nr0

3=10-6:

See also results by Gezerlis et al., PRL 103, 060403 (2009); 
Joe Carlson’s talk at INT, Seattle, in March 2010.



Energetics Suggest (But Need to
Determine Compressibility Matrix…)

• Small M/m: Normal state is energetically less favorable
than state compatible with superfluidity.

• Nodal surface of normal state seems compatible with
“cluster formation”: indication of an instability.

• Nodal surface of state compatible with superfluidity seems
to prohibit “cluster formation”; this state is “numerically”
more stable than normal state.

Excitation gap
gives system
rigidity with
respect to spin
oscillations?

In-phase oscillation:
Allowed in NF and SF.

Out-of-phase oscillation:
Allowed in NF but not in SF.



Outlook:
What’s Next on the To Do List?

• Solve three-body problem with ZR and FR interactions as a function
of scattering length for different mass ratios.

• Determine structural properties of the three-body bound state.

• Go to larger systems (4+1 and 3+2) to check if absence of negative
energy states holds up to mass ratio of about 12.

• Estimate lifetime of excited three-body state.

• Go back to many-body system… SF state stable because it
effectively excludes three-body correlations?



Summary and Implications: Unequal-
Mass Systems are Rich and Non-Trivial

• Finite-range effects increase with increasing κ (become
tremendous).

• L=1 three-body bound states exist for κ>12.3131 for a class
of short-range model interactions at unitarity.

• How to treat many-body system?
 FN-DMC calculations (as currently implemented) cannot

go to sufficiently small r0 for large κ. Can/should the
ground state be eliminated for κ>12.3131?

 Can FN-DMC calculations map out range-dependence for
small κ?

 Treat ZR interactions directly (do not extrapolate)?


