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Outli f This Tall

* Introduction:
- Why mass-imbalanced Fermi gases?
* Open questions.

= Main part:
* Crossover and BEC regime.

* Results for three- and four-particle systems with
infinitely large s-wave scattering length.

 Homogeneous system.

= Summary



Why Fermi Mixtures With Unequal
Masses?

* On the theory side:
= Analogies with spin-imbalanced system.

= At the mean-field level: “nothing new” (equations for
equal masses rewritten in terms of reduced mass).

* For mass ratios k>13.607, three-body parameter is
needed: Efimov physics.

* Previous MC studies suggest existence of bound states
or instability for k<13.607: ZR versus FR?

* Experiments are gearing up:
= Fermi-Fermi mixture: 49°K/°Li (k~6.7), 8’Sr/6Li (k=14.5),
Yb/6Li (k=30), Yb/4K (k=~4.5),...

= Fermi-Bose mixture (one light particle): 8’Sr/’Li (k=12.4)



Why Fermi Mixtures With Unequal
M 2 S ific Q i

* Quantify finite-range effects:
* Why?
« Realistic atom-atom interactions have finite range.

« Some numerical approaches only applicable to FR
interactions.

* How?
* For N=3, comparison of energetics obtained for ZR
interactions (analytical) and FR interactions (numerical).
 For N>3, numerical: SV approach and Monte Carlo.

* In the (universal?) ZR limit:
* Two-body versus three-body resonance.
* How does three-body resonance appear?
* Implications of three-body resonance for larger systems?



“Up/Heavy” - “Down/Light” Interaction:
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For unequal masses: Use reduced mass in scattering problem.



BCS-BEC Crossover with Cold Two-
Component Atomic Fermi Gas: m,=m, _
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* STABLE GAS!!! No bound trimers

or tetramers.
a4=1.12a_.
a, 4=0.6a,.

Images (experiment): Jin group, JILA.

Crossover determined by a_ alone (one two-body parameter).
Unitary and NI regime have same number of length scales.
For unequal masses: Do trimers or tetramers exist?

Do novel many-body phases exist?



Universal Energy Crossover Curve for

Trapped Fermi System

Universal energy crossover curve:
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| For example, four
fermions per site in
deep optical lattice.

von Stecher, Greene, Blume,
PRA 76, 053613 (2007).




N=3: Energy Crossover Curve for Mass

Ratios 1 and 4 (Equal Frequencies)
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von Stecher, Greene, Blume,
PRA 77, 043619 (2008).
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Crossover Curve for N=4: Different
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Determination of Dimer-Dimer

Scattering Length and Effective Range

* Perform full scattering calculation:
= Analytical treatment: ZR interactions (Petrov).

* Numerical treatment: FR interactions within hyperspherical
framework (Greene group).

* Our idea: Perform bound state calculations for four-fermion
system and, assuming formation of two composite bosonic
dimers, extract dimer-dimer phase shift through comparison
with analytically known two-particle solution for ZR
interactions.

* Analog of Luescher’s formula, which is often used in nuclear
theory (two particles in a box: relationship between phase
shift and eigenenergy).

* Extremely important for lattice QCD calculations.
M. Luescher, Nucl. Phys. B 354, 531 (1991); 364, 237 (1991).



Two s-Wave Interacting Particles In

E,..=(2n+1/2)hv
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Analytical treatment: Busch et al., Found. of Phys. (1998).



Dimer-Dimer Scattering Length and

(c)

(a)

3 .
~ . . . .

D |® 4 Fermions

A 2.5F |
| 2 Bosons

= 3 : : : :
&)

05._e@—x—4?4*440—&—64o>0*¥"L.x;ﬁ
0

0 0.2 0.4

as/a

0.6
(M)

ho

0.8

For large mass ratio, we
consider dimer-dimer
branch; other branches
exist...

ryq iNncreases with
increasing mass ratio «:
For =20, r ,~0.5a .

von Stecher, Greene, Blume, PRA 76, 053613 (2007).

1.4

1.2}

add/as

O
o2

Tdd/ Qs

o
»

o
~

First quantitative prediction
for dimer-dimer effective range.

Petrov et al., JPB 38, S645 (2005) .

FN-DMC l X
Y
SV

& n

10 15 20

Mass ratio

For x>13.607, see also B. Marcelis et al., PRA 77, 032707 (2008).



From now on, Unitarity:

Hyperspherical Treatment of Trimer

* Exact separability.
* Relative (internal) wave function: ¥ _(R,Q)=R-2F(R)®(Q).
* Solution to hyperangular wave function gives v:

ht 02 RPr(v+1)
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* Defining v = s-1/2 gives: v(v+1) = s2-1/4.
* For the three-body problem, s is known for all symmetries,
angular momenta and mass ratios.

* If we take s as given, then problem reduces to solving 1D
differential equation in effective hyperradial potential (in
this case, simple analytical form).



Hyperangular Solution (2 Heavy, 1
Light; ZR Interactions with a "'=0)

Analytical solution for s [Efimov (1971); see also, e.g., Kartavtsev and
Malykh, JPB 40, 1429 (2007); Rittenhouse, Ph.D. thesis, CU Boulder
(2009)]:
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Beyond these mass ratios, s, becomes purely imaginary.
Three-body parameter is needed — Efimov physics (for L=1 state, 13.607...).

L=1, a,>0 and ¥>8.172...: 1 three-body bound state exists in free space.




Effective Hyperradial Three-Particle

Potential Curves For L"=1-
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For x=12.3131, we have s,=1/2: Just the usual isotropic HO?



Hyperradial Solution (s,=1/2 Example):
What to K | What to Eliminate?

* Want to solve: [-1/2F’’(x) + x?/2 F(x)] = eF(x); x=R/a,,, e=E/hv.
* Two linearly independent solutions (no BC specified yet):
= f(x) = A x exp[-x?/2] ,F,(-e/2+3/4, 3/2, x?)
= g(x) = B exp[-x?/2] ,F,(-e/2+1/4, 1/2, x?)
* Write: F(x) = f(x) cos(nn) - g(x) sin(mp).
* Take large x limit and constrain u such that exp(x?/2) pieces
cancel.

* Consider small x limit and impose BC: F’(0)/F(0) = -a, /b.
* Of course: For Nl isotropic HO, we have F(0)=0 and b=0.

* However: In our case, b cannot be determined within ZR
framework (b depends, in general, on two-body potential).

* If F(x) = f(x): E = E;= (2n+3/2)hv = (2n+s,+1)hv.
* If F(x) = g(x): E = E, = (2n+1/2)hv = (2n+s)hv.

Borca, Blume, Greene, NJP 5 (2003).



Trapped Fermi-System (2 heavy, 1light)
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The possibility of having a “three-body resonance” for 8.169< ¥<13.606 (regular and
irregular solution contribute) was pointed out by Nishida et al., PRL 100, 090405 (2008).



It’s not Numerics...
onvergence for Differer

range r,~0.01a,,

Vid




It’s not Numerics:

Add SR Repulsive Piece...

Mass ratio 12.5, L=1, first excited state with r,~0.0025a, .
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Stable results!



Trapped Fermi-System (2 heavy,1 light)
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Trapped Fermi-System (2 heavy,1 light)
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Trapped Fermi-System (2 heavy,1 light)
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Four-Particle System (2 Heavy, 2 Light)
 Unitarit
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N=4, L=1 energies nearly “parallel” to N=3, L=1 energies:
Indicative of universal physics?

N=4, L=0 and 2: No negative energy states up to x=11.



Polarized System: 3+1 and 4+1

* Whole range of interesting physics: polaron physics,
phase separation, etc. (see MIT and Rice experiments).

* Ground state of 3+1 and 4+1 system have unnatural
parity [II=-(-1)}]: Need more general basis functions in

SV approach.
* xk=1: Comparison between SV and FN-DMC energies.

Zwierlein et al.,
Science 311, 492 (2006).




Preliminary Results: Four-Particle

System (3 heavy,1 light) with a,-'=0
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Implications of Few-Body Results for

Unequal Masses at Unitarity

* Finite range effects surprisingly large - had been
partially overlooked by some of our earlier studies at
unitarity and in BEC regime.

°* E.g., need to double-check effective range of dimer-
dimer system.

* Three-body resonance realized *exactly* at s;=1/2
(k=12.3131)?

* Implications for homogeneous system:

= Can some of previously unresolved results be
explained by FR effects?

= How to reach ZR limit?



E/N for Homogeneous System at

Unpublished FN-DMC results for N,,=N_ by Astrakharchik, Blume

and Giorgini (‘06/°07); nr,3=10"°:
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Stability of normal state?

/" Threebody or cluster

states?

State compatible with
superfluidity has lower
energy than normal state.

Mass ratio of 50!
SF state appears
“numerically stable”!

See also results by Gezerlis et al., PRL 103, 060403 (2009);

Joe Carlson’s talk at INT, Seattle, in March 2010.



Energetics Suggest (But Need to

* Small M/m: Normal state is energetically less favorable
than state compatible with superfluidity.

°* Nodal surface of normal state seems compatible with
“cluster formation”: indication of an instability.

* Nodal surface of state compatible with superfluidity seems
to prohibit “cluster formation”; this state is “numerically”
more stable than normal state.

€ <O

In-phase oscillation:
Allowed in NF and SF.

Out-of-phase oscillation:
Allowed in NF but not in SF.

Excitation gap
gives system
rigidity with
respect to spin
oscillations?



Outlook:
What's Next on the To Do List?

* Solve three-body problem with ZR and FR interactions as a function
of scattering length for different mass ratios.

* Determine structural properties of the three-body bound state.

* Go to larger systems (4+1 and 3+2) to check if absence of negative
energy states holds up to mass ratio of about 12.

* Estimate lifetime of excited three-body state.

* Go back to many-body system... SF state stable because it
effectively excludes three-body correlations?



Summary and Implications: Unequal-
* Finite-range effects increase with increasing k (become
tremendous).

* L=1 three-body bound states exist for k>12.3131 for a class
of short-range model interactions at unitarity.

* How to treat many-body system?

* FN-DMC calculations (as currently implemented) cannot
go to sufficiently small r, for large k. Can/should the
ground state be eliminated for «>12.3131?

= Can FN-DMC calculations map out range-dependence for
small x?

* Treat ZR interactions directly (do not extrapolate)?



