Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciple×

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ^{4}He Conclusion/Outlook

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

Dipolar quantum gases, exciplex formation in ⁴He, and surface condensate Barcelona, March 2009

<u>Robert E. Zillich</u> D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria

April 1, 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Outline

Strongly correlated dipolar quantum gases

Introduction (time-dependent) hyper-netted chain Euler-Lagrange 2D dipolar quantum gas Quasi-2D dipolar quantum gases Conclusion/Outlook

Rb*-He Exciplex formation on ⁴He surface

Helium matrix isolation spectroscopy (HENDI) Diffusion and Path Integral Monte Carlo Rb-He and Rb*-He Interaction Rb*1He_N: 1st excited state, ${}^{2}\Pi_{1/2}$ Rb*2He_N: 2nd excited state, ${}^{2}\Pi_{3/2}$ Rb₂ on ⁴He surface Conclusion and Outlook

Surface condensate of doped ⁴He clusters

Helium matrix isolation spectroscopy (HENDI) Description of BEC in clusters Path Integral Ground State Monte Carlo (PIGSMC) Results Conclusion/Outlook Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N}: \ \mathsf{1st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N}: \ \mathsf{2nd state} \\ \mathsf{Rb}_2 \ \mathsf{on}^4 \ \mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Introduction to dipolar QGs

experiments:

- permanent magnetic dipole moments of atoms (Cr): Pfau group (Lahaye et al, Nature 448, 672 (2007))
- ▶ permanent electric dipole moments of heteronuclear dimers (RbCs, etc): transfer atom pairs to weakly bound state by Feshbach resonance → transfer to rovibrational g.s. by STIRAP laser pulses (Innsbruck; JILA, NIST: Ni et al., Science 322, 231(2008),...)

dipole-dipole interaction:

polarized:
$$\mathbf{v}_{dd}^{\parallel}(\mathbf{r}_{12}) = d^2 \frac{1 - 3\cos^2\theta_{12}}{r_{12}^3}$$

unpolarized: $\mathbf{v}_{dd}(\mathbf{r}_{12}) = d^2 \frac{\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 - 3(\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{r}})(\hat{\mathbf{e}}_2 \cdot \hat{\mathbf{r}})}{r_{12}^3}$

in this talk, only polarized QGs, no internal (rotation, spin) degree of freedom

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro

(TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N \colon \mathsf{1st} \text{ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N \colon \mathsf{2nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on } ^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

(time-dependent) hyper-netted chain Euler-Lagrange

(deeper theoretical background \rightarrow E. Krotscheck's talk)

HNC-EL

$$\Phi_0(R) = \prod_i \varphi(\mathbf{r}_i) \prod_{i < j} f(\mathbf{r}_i, \mathbf{r}_j) \dots = e^{\frac{1}{2} \sum_i u_1(\mathbf{r}_i)} e^{\frac{1}{2} \sum_i <_j u_2(\mathbf{r}_i, \mathbf{r}_j)} \dots$$
$$\frac{\delta \langle H \rangle}{\delta u_1(\mathbf{r})} = 0 , \qquad \frac{\delta \langle H \rangle}{\delta u_2(\mathbf{r}_1, \mathbf{r}_2)} = 0 , \qquad \frac{\delta \langle H \rangle}{\delta u_3(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)} = 0$$

TDHNC-EL

$$\Psi(R; t) = e^{-iE_0 t} \frac{e^{\frac{1}{2}\delta U(R;t)}}{\langle \Psi | \Psi \rangle^{1/2}} \Phi_0(R)$$

with $\delta U(R; t) = \sum_i \delta u_1(\mathbf{r}_i; t) + \sum_{i < j} \delta u_2(\mathbf{r}_i, \mathbf{r}_j; t) + \dots$
 $\delta \int dt \langle \Psi(t) | H(t) - i\hbar \frac{\partial}{\partial t} | \Psi(t) \rangle = 0$

• $\delta u_n = 0$ for n > 2 & uniform limit approximation: CBF approximation

"…" & no uniform limit approximation: see EK's talk

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

2D dipolar quantum gas

dipolar quantum gas in 2D, polarized in 3rd direction:

$$H = -\frac{\hbar^2}{2m}\sum_j \nabla_j^2 + d^2 \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

- interaction obviously isotropic
- ► characteristic length scale r₀ = md²/ħ² characteristic energy scale E₀ = ħ²/mr₀²

ground state

DMC simulations: G. E. Astrakharchik et al. PRL 98, 060405 (2007)

excitations

CBF approximation, compared to Bjil-Feynman spectrum $\epsilon_F(k) = \frac{\hbar^2 k^2}{2mS(k)}$ and to Bogoliubov spectrum $\epsilon_B(k)$

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N \colon \mathsf{1st} \text{ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N \colon \mathsf{2nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on }^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Dynamic structure function $S(k, \omega)$ of 2D dipolar QG

- at very low n: Bogoliubov + damping
- increase n: splitting into phonon and multi-excitation

▶ appearance of roton at nr₀ ≈ 4

F. Mazzanti, REZ, G. Astrakharchik, J. Boronat, PRL **102** 110405 (2009)

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciple×

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N \colon \mathsf{1st} \text{ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N \colon \mathsf{2nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on } ^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - つへで

Work in progress: Quasi-2D dipolar quantum gases

experiment

- real trapped quantum gases: confinement in all 3 directions (oblate or prolate).
- tight confinement in z-direction: $v_{\text{ext}}(z) = \alpha z^2$

theory

▶ without short-range repulsion (s-wave scattering length a), polarized quasi-2D QG is only metastable: tunneling into attractive region of v^{||}_d(r₁₂) = (1 - 3 cos² θ₁₂)/r³₁₂

only GP (mean field) calculations available: stable/unstable, depending on a, d, α, n, g close to instability: appearance of "roton" (≠ roton in ⁴He!)

► ⇒ use inhomogeneous HNC-EL! non-trivial: "ground state" is only meta-stable (see figure) (GP does not "see" this problem, since there are no correlations) Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

HENDI DMC and PIMC Interactions $Rb^{\pm 1}He_N$: 1st state $Rb^{\pm 2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

Quasi-2D dipolar quantum gases with repulsion

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Dipolar QG.

exciplexes, and surface

Quasi-2D dipolar quantum gases

Results with $\sigma = 0.2$, $\rho = 2$:

- ▶ rotonization → possibly dimerization
- ► careful approach: $v_{dd}^{\parallel}(\mathbf{r}_{12}) = (1 3\varepsilon \cos^2 \theta_{12})/r_{12}^3$
- peak in $g(z, -z, r_{\parallel})$
- signature of dimerization: emergence of "roton" similar to GP results for collapse $k'_{\parallel} \approx 3 \rightarrow \lambda' \approx 2 < \text{confinement size}$
- dimerization happens at *e* similar to occurrence of bound state of free dimer
- caveat: description in terms of s-wave scattering length?

dispersion of lowest mode $\omega(k_{\parallel})$ in Bjil-Feynman approximation:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{\mathcal{N}} \colon \mathsf{1st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{\mathcal{N}} \colon \mathsf{2nd state} \\ \mathsf{Rb}_2 \text{ on } \mathsf{4He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

${\sf Conclusion}/{\sf Outlook}$

Conclusion:

- 2D: transition from weakly interacting to strongly interacting: splitting of Bogoliubov spectrum —> phonon-roton and multi-excitation continuum
- 2D: roton due to strong correlation
- quasi-2D: instability due to "head-to-tail" attraction of dipoles possible dimerization phase transition

Outlook for quasi-2D:

- mapping out (σ, ρ, α, d) space
- searching for spectrum with both kinds of rotons:
 - 1. strong correlations due to repulsion
 - 2. "rotonization" due to attraction
- full understanding of possible dimerization
- Bjil-Feynman \rightarrow CBF $\rightarrow \dots$
- no hard-sphere repulsion: make HNC-EL work

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciple:

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N} \colon \mathsf{1st \ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N} \colon \mathsf{2nd \ state} \\ \mathsf{Rb}_2 \text{ on } \mathsf{4} \mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Strongly correlated dipolar quantum gases

Introduction (time-dependent) hyper-netted chain Euler-Lagrange 2D dipolar quantum gas Quasi-2D dipolar quantum gases Conclusion/Outlook

Rb*-He Exciplex formation on ⁴He surface

Helium matrix isolation spectroscopy (HENDI) Diffusion and Path Integral Monte Carlo Rb-He and Rb*-He Interaction Rb*¹He_N: 1st excited state, ${}^{2}\Pi_{1/2}$ Rb*²He_N: 2nd excited state, ${}^{2}\Pi_{3/2}$ Rb₂ on ⁴He surface Conclusion and Outlook

Surface condensate of doped ⁴He clusters

Helium matrix isolation spectroscopy (HENDI) Description of BEC in clusters Path Integral Ground State Monte Carlo (PIGSMC) Results Conclusion/Outlook Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N: \ \mathsf{1st} \ \mathsf{state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N: \ \mathsf{2nd} \ \mathsf{state} \\ \mathsf{Rb}_2 \ \mathsf{on}^4 \ \mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Experiments: Helium matrix isolation spectroscopy

Spectroscopy of doped superfluid ⁴He clusters/droplets (\sim 0.4K) depletion spectroscopy: chromophore excitation detected by evaporating ⁴He atoms.

- \rightarrow measureing sharp rovib. spectra of isolated molecules at low T
- \rightarrow stabilizing transition states (conformations)
- \rightarrow assembly of small clusters in He

 \rightarrow probing ⁴He: superfluidity on microscopic scale – microscopic Andronikashvili exp.

(Grevenev et al., Science'98)

- \rightarrow theoretical understanding of rotational spectra in terms of superfluidity (Paesani, Kwon, Whaley, PRL'05)
- \rightarrow electronic excitation of adsorbed atoms
- \rightarrow exciplex formation; Rb^{*} on ⁴He surface

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

HENDI

DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

Rubidium adsorbed on ⁴He clusters

Motivation for this work:

 Ist electronically exited Rb state, ²Π_{1/2} (Rb*1): Experiment by group of W. Ernst: excitation-deexcitation cycles of Rb on He surface - electron spin pumping G. Auböck et al., PRL 101, 035301 (2008)
 2nd electronically exited Rb state, ²Π_{3/2} (Rb*²): exciplex formation Rb→Rb*He Reho et al., JCP 113, 9694 (2000) Droppelmann et al., PRL 93, 023402 (2004)
 more than 1 adsorbate/dopant: spin-aligned alkali clusters (only on He!) trimers: Nagl et al., PRL 100, 063001 (2008)

dimers: Auböck et al., JPC (2007)

 electronically excited alkalis in *solid* He Nettels et al. (Fribourg), PRL 94, 063001 (2005)

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

HENDI

DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ${}^{4}He$ Conclusion/Outlook

Surface Condensate

Diffusion and Path Integral Monte Carlo

$$H = -\frac{\hbar^2}{2M} \nabla_0^2 - \frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + V_{RbHe}(\{\mathbf{r}_j\}) + \sum_{i < j} V_{HeHe}(|\mathbf{r}_i - \mathbf{r}_j|)$$

T = 0: Diffusion Monte Carlo

- Schrödinger equations in imaginary time = diffusion equation
- diffusion towards ground state by stochastic Langevin process (random walk)
- exact ground state energy E₀
 exact expectation values for diagonal operators (ρ(r), etc.): descendent weighting
 (J. Casulleras, J. Boronat, PRB 52, 3654 (1995))
- efficiency: importance sampling using optimized trial wave function

T > 0: Path Integral Monte Carlo

- Monte Carlo sampling à la Metropolis of *N*-body density matrix $\rho(R, R'; \beta) = \langle R | e^{-\beta H} | R' \rangle$
- short-time approximation of ρ(R, R'; β): pair-density approximation for He-He and He-Rb interaction, 2nd-order ("primitive") approximation for He-Rb*
 (D. M. Ceperley, RMP 67, 279 (1995))
- ▶ quantum-classical isomorphism: quantum particle → "polymer" chain of classical particles; Bose exchange → reconnecting polymers

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciple×

HENDI

DMC and PIMC

Interactions Rb*1He_N: 1st state Rb*2He_N: 2nd state Rb₂ on 4 He Conclusion/Outlook

Surface Condensate

Rb-He and Rb*-He Interaction

w/o spin-orbit coupling

with spin-orbit coupling

Rb-He and Rb-He* due to Pascale (1983)

interaction: 1 surface for Rb-He and 2 surfaces for $\mathsf{Rb}^*\mathsf{He}$

- 1. lowest, ${}^{2}\Pi_{1/2}$ (Rb^{*1}): attractive + barrier
- 2. middle, ${}^{2}\Pi_{3/2}$ (Rb*²): purely attractive

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

3. highest, ${}^{2}\Sigma_{1/2}$: purely repulsive

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciple

HENDI DMC and PIMC Interactions $Rb^{\pm1}He_N$: 1st state $Rb^{\pm2}He_N$: 2nd state Rb_2 on ${}^{4}He$ Conclusion (Outlook

Surface Condensate

Rb*1-He_N Interaction: Many-Body Interaction

add more He atoms: DIM approximation \Rightarrow <u>not pairwise additive</u> Nakayama et al., JCP 114, 780 (2001)

> N = 2: miminum energy for linear He-Rb*-He configuration (also true for 2nd excited state of Rb)

N > 2: minimum configurations? (different from 2nd excited state of Rb) Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciple>

HENDI DMC and PIMC Interactions

 $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Rb^{*1}He_N: 1st excited state, ${}^{2}\Pi_{1/2}$

small clusters: 0 -100-20030 [K] -300 -400-500-6000 1 2 3 4 5 6 7 8 9 11.12 14 Ν

DMC simulation details:

• for N > 7: importance sampling: Jastrow wave function for He-He, Fermi well for He

results:

• $E_0(N)$ has kink at N = 7- 1st shell closure?

M. Leino, A. Viel, REZ, JCP 129, 184308 (2008)

Dipolar QG. exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti. G. Astrakharchik. J. Boronat; A. Viel, M. Leino; J. Mayrhofer

$Rb^{*1}He_N$: 1st state

Rb*2He_N: 2nd state Rbo on ⁴He

Structure: Angular Distribution $\rho(\varphi)$

Q: What is structure of He solvation shell around Rb*? $\rightarrow \rho(\varphi)$

- $\blacktriangleright \varphi$ is He-Rb-He angle
- N = 2, 3, 4, 5, 6, 7 (bottom to top)
- PIMC and DMC (descendent weighting, Casulleras & Boronat, PRB (1995))

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciple

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

N = 1...7: He forms ring around Rb^{*} — symmetry breaking due to non-pairwise additive interaction N = 8, 9, ...: further He atoms form weakly bound "tire" around "hub cap"

・ロト・日本・山田・ 山田・ 山田・

Structure: He density of Rb*1He7 exciplex

iso surfaces and (x, y) cut plane:

definition of body-fixed frame: see Baroni, Moroni, Comp. Phys. Comm. 6, 1884 (2005)

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciple×

HENDI DMC and PIMC Interactions Rb*¹He_N: 1st state

 $Rb^{*2}He_N$: 2nd state Rb_2 on 4He Conclusion/Outlook

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rb and Rb*1 on He Surface

experiment

Auböck et al. (Graz), PRL **101**, 035301 (2008): Optical spin pumping of Rb on He excitation $Rb \rightarrow Rb^{*1}$; relaxation $Rb^{*1} \rightarrow Rb \Rightarrow \underline{Rb^{*1} \text{ bound}}$

simulation (PIMC): "vertical Monte Carlo transition"

 RbHe_N configurations \rightarrow switch to PES for 1st excited state \rightarrow relax $\mathsf{Rb}^{*1}\mathsf{He}_N$ configurations: no information about true dynamics, dissipation etc.

PIMC simulation details:

- ▶ *T* = 0.31K
- ► thin ⁴He film on frozen He (instead of large droplet $N = O(10^5)$) \Rightarrow possible bias from finite thickness

result:

Rb* relaxes to *metastable* surface state farther away than Rb where is the ring of 7 He atoms? He cannot cross the barrier of ${}^{2}\Pi_{1/2}$ potential. Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

HENDI DMC and PIMC

$Rb^{*1}He_N$: 1st state

 $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

Rb and Rb*1 on He Surface: Dimples

Rb

- deep dimple
- $E_B \approx -15 \text{K}$

Rb^{*1}

- shallow, metastable dimple
- $E_B \approx -8 \text{K}$
- ► transition/relaxation to ground state (w/ring of 7 He) never observed in PIMC → no formation of exciplex

Dynamics? — MC good for equilibrium \longrightarrow correlated basis function (CBF) theory?

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich D. Hufnagl, E. Krotscheck;

F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mbox{HENDI} \\ \mbox{DMC and PIMC} \\ \mbox{Interactions} \\ \mbox{Rb}^{\pm1}\mbox{He}_{N} : \mbox{1st state} \\ \mbox{Rb}^{\pm2}\mbox{He}_{N} : \mbox{2nd state} \\ \mbox{Rb}_{2} \mbox{ on } \mbox{He} \\ \mbox{Conclusion/Outlook} \end{array}$

Surface Condensate

$Rb^{*2}He_N$: 2nd excited state, ${}^2\Pi_{3/2}$

Experiment

formation of $\mathsf{Rb}^{*2}\mathsf{He}$ exciplex upon excitation of Rb on He surface \rightarrow desorption

our results

- Rb^{*2} can form linear trimer with He: Rb^{*2}He₂
- further He atoms are very weakly bound
- "vertical MC transition" Rb → Rb*² on He surface: formation of Rb*²He exciplex
- $Rb^{*2}He_{1/2}$ bound to surface ($\sim -15K$)

Rb*2

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciple>

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{\mathcal{N}} \colon \mathsf{1st} \text{ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{\mathcal{N}} \colon \mathsf{2nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on }^4 \text{ He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Rb_2 on ⁴He surface

Experiment

spin-aligned alkali clusters on He (Stienkemeier et al., Ernst et al.): adsorb alkali one by one \Rightarrow formation of alkali dimer, trimers which are weakly bound \Rightarrow no desorption

Auböck et al. (Graz), JPC (2007): electronic spectrum split by presence of He surface, modeling of spectrum requires "crystal field" parameters, *i.e.* structural information, such as orientation of molecular axis, distance from surface

Rb_2 in triplet state + ${}^{4}He$

- ▶ Rb-Rb = $6.1181 \text{ Å} \Rightarrow B_0 = 0.0152 \text{ K}$
- RCCSD(T) with the aug-cc-pV5Z for He atom and the basis set augmented MDF small-core ECP (aug-ECP28MDF) basis set in uncontracted form for Rb.
- basis set superposition error (BSSE) correction has some effect
- potential minimum: T-shape same for Li₂, Mol. Phys. 103, 3223 (2005)
- Rb₂He_N: Rb₂ lying flat on He surface?
- rotational dynamics? only in plane or also out of plane?

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state **Rbp on ⁴He**

Conclusion/Outlook

Surface Condensate

Rb_2 on ⁴He surface: structure, pendular modes

dimple @ T = 0.3K:

- isosurface of ⁴He density w/resp to Rb₂
- anisotropic (dumb bell shape)
- Rb₂ parallel on He surface

molecule axis orientation $\rho(\theta)$:

pendular motion @ T = 0.3K:

- free rotation in surface (see below)
- pendular modes out of surface plane
- ► assume $\rho(\theta; T) = \rho(\theta, 0) \rightarrow$ harmonic mean field pendular modes: $\hbar\omega = 0.94 \,\text{K}$

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state

Rb₂ on ⁴He Conclusion/Outlook

Surface Condensate

Rb₂ on ⁴He surface: rotational dynamics

PIMC simulation

Analysis

fitting free 2D rotor correlation function to PIMC result:

$$F_{M}^{\text{free}}(t) = \frac{1}{Z} \sum_{n} e^{-B(M+n)^{2}t} e^{-Bn^{2}(\beta-t)}$$

reduced effective rotational constant

$$B_{
m eff} = (0.94 \pm 0.05) B_0$$

 \rightarrow almost indistinguishable from "gas phase" (=free) value $B_0 = 0.0152$ K

Rb*1He_N: 1st state Rb*2He_N: 2nd state Rb₂ on 4He Conclusion/Outlook Surface Condensate HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

Dipolar QG.

exciplexes, and surface

Robert E. Zillich

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q @

Conclusion and Outlook

Conclusion

- Exciplex structure of 7 ⁴He atoms around Rb^{*} flat cluster
- Rb→Rb^{*1} [²Π_{1/2}]: no exciplex formation, but metastable weakly bound surface state of Rb^{*}, consistent with experiments
- ► $Rb \rightarrow Rb^{*2}$ [${}^{2}\Pi_{3/2}$]: exciplex formation
- ▶ spin-triplett Rb₂ on ⁴He:
 - \rightarrow flat equilibrium orientation on surface
 - \rightarrow 2D rotor with effective rotational constant \approx gas phase value

Outlook

- ▶ dynamics of (many-body!) excitation process with CBF method: → coupling to ripplons and phonons; dissipation?
- larger (earth) alkali clusters in/on ⁴He

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

Strongly correlated dipolar quantum gases

Introduction (time-dependent) hyper-netted chain Euler-Lagrange 2D dipolar quantum gas Quasi-2D dipolar quantum gases Conclusion/Outlook

Rb*-He Exciplex formation on ⁴He surface

Helium matrix isolation spectroscopy (HEND Diffusion and Path Integral Monte Carlo Rb-He and Rb*-He Interaction Rb*¹He_N: 1st excited state, ${}^{2}\Pi_{1/2}$ Rb*²He_N: 2nd excited state, ${}^{2}\Pi_{3/2}$ Rb₂ on ⁴He surface Conclusion and Outlook

Surface condensate of doped ⁴He clusters

Helium matrix isolation spectroscopy (HENDI) Description of BEC in clusters Path Integral Ground State Monte Carlo (PIGSMC) Results Conclusion/Outlook Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N : 1\mathsf{st} \text{ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N : 2\mathsf{nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on } ^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Experiments: Helium matrix isolation spectroscopy

Spectroscopy of doped superfluid ⁴He clusters/droplets (\sim 0.4K) depletion spectroscopy: chromophore excitation detected by evaporating ⁴He atoms.

- \rightarrow measureing sharp rovib. spectra of isolated molecules at low T
- \rightarrow stabilizing transition states (conformations)
- \rightarrow assembly of small clusters in He
- \rightarrow probing ⁴He: superfluidity on microscopic scale microscopic Andronikashvili exp.
 - (Grevenev et al., Science'98)
- \rightarrow theoretical understanding of rotational spectra in terms of superfluidity (Paesani, Kwon, Whaley, PRL'05)
- \rightarrow Bose-Einstein condensation on microscopic scale
- \rightarrow No theoretical understanding of rotational spectra in terms of BEC

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N: \ \mathsf{1st} \ \mathsf{state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N: \ \mathsf{2nd} \ \mathsf{state} \\ \mathsf{Rb}_2 \ \mathsf{on}^{\pm1}\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI

BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

BEC in Strongly Interacting Systems: One-Body Density Matrix (OBDM)

- ▶ ideal gas of non-interacting bosons: below critical temperature T_C, a macroscopic number N₀ of particles occupy the zero momentum state → condensation in momentum space
 - $\longrightarrow N_0$ atoms described by "macroscopic" wave function
- concept of macroscopic wave function carries over from non-interacting to weakly interacting systems
- Need a generalization for strong interactions and to inhomogeneous systems such as droplets
- 1956: Penrose and Onsager generalize concept of BEC by using one-body density matrix (OBDM)
- At T = 0K the OBDM can be written as

$$\rho_1(\mathbf{r},\mathbf{r}') = N \int d^3 r_2 \dots d^3 r_N \, \Phi_0(\mathbf{r},\mathbf{r}_2,\dots,\mathbf{r}_N) \, \Phi_0(\mathbf{r}',\mathbf{r}_2,\dots,\mathbf{r}_N) \quad (1)$$

sample \(\rho_1(\mathbf{r},\mathbf{r}')\) with Path Integral Ground State Monte Carlo... see later

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{\mathcal{N}} \colon \mathsf{1st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{\mathcal{N}} \colon \mathsf{2nd state} \\ \mathsf{Rb}_2 \text{ on } {}^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Bulk .vs. Inhomogeneous System

Bulk

- Bulk: homogeneous and isotropic
- normalized OBDM

$$n(\overline{r}) = \frac{\rho_1(\overline{r})}{\rho_0} = \int \Phi_0(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \times$$

$$\Phi_0(\mathbf{r}_1+\bar{\mathbf{r}},\mathbf{r}_2,\ldots,\mathbf{r}_N)d^3r_1\ldots d^3r_N$$

where $\Phi_0=\mbox{ground}$ state wave function

condensate fraction is defined as

$$n_0 = \frac{N_0}{N} = \lim_{\bar{r} \to \infty} n(\bar{r})$$

Natural Orbitals

 Expansion of the one-body density matrix (OBDM) in natural orbitals (NO) yields

$$ho_1(\mathbf{r}',\mathbf{r}) = \sum_i N_i \phi_i^*(\mathbf{r}) \phi_i(\mathbf{r}')$$

- ► Largest eigenvalue N_0 corresponds to condensate if $N_0 = O(N)$ and $N_i \ll N$, $i \neq 0$
- Inhomogeneous but spherical symmetry: expand the OBDM as

$$\rho_1(\mathbf{r}',\mathbf{r}) = \sum_{\ell} \frac{2\ell+1}{4\pi} P_{\ell}(\hat{\mathbf{r}}\cdot\hat{\mathbf{r}'})\rho_{\ell}(\mathbf{r}',\mathbf{r})$$

• defining $u_{n\ell}(r) \equiv r\phi_{n\ell}(r)$, we end up with the eigenvalue problem

$$\int \left[r\rho_{\ell}(r,r')r' \right] u_{n\ell}(r')dr' = N_{n\ell}u_{n\ell}(r)$$

$$\rho_1(\mathbf{r}) = \sum_{\ell,n} (2\ell+1) N_{n\ell} |\phi_{n\ell}(\mathbf{r})|^2$$
$$N = \sum_{\ell,n} (2\ell+1) N_{n\ell}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N} \colon \mathsf{1st \ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N} \colon \mathsf{2nd \ state} \\ \mathsf{Rb}_2 \text{ on } \mathsf{4He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Path Integral Ground State — diffusion to ground state

Imaginary Time Propagation

exact ground state wave function $\Phi_0(R)$, $R \equiv (\mathbf{r}_1, \dots, \mathbf{r}_N)$, can be obtained from trial wave function $\Psi_T(R)$ as

$$\Phi_0(R) \sim \lim_{\beta/2 \to \infty} \langle Re^{-\frac{\beta}{2}H} \rangle \Psi_T = \lim_{\beta/2 \to \infty} \int G(R, R', \beta/2) \Psi_T(R') dR'$$

with the imaginary-time propagator or Greens function

$$G(R, R', \beta/2) = \langle R|e^{-(\beta/2)H}|R'\rangle.$$

Split β into shorter imag. time steps, $\frac{\beta}{2} = M\tau$.

$$G(R, R', \beta/2) = \int G(R, R_1, \tau) G(R_1, R_2, \tau) \cdots G(R_{M-1}, R', \tau) dR_1 \cdots dR_{M-1}$$

good trial wave function $\Psi_T \Rightarrow$ short imaginary time β

$$\begin{array}{l} \text{Split imaginary time into steps } (\rightarrow \text{``beads''}) \text{:} \\ \left\langle \hat{O} \right\rangle \propto \lim_{\beta \to \infty} \int dY \, P'(Y,\beta) \hat{O}(R_M,\tilde{R}_M) = \lim_{N_{mov} \to \infty} \frac{1}{N_{mov}} \sum_{i=1}^{N_{mov}} \hat{O}(R_M^i,\tilde{R}_M^i) \end{array}$$

with

$$P'(\mathbf{Y},\beta) = \frac{1}{\mathsf{Norm}} \Psi_{\mathcal{T}}(\mathbf{R}_0) \times \prod_{j=0}^{M-1} G(\mathbf{R}_j,\mathbf{R}_{j+1},\tau) \times \prod_{j=0}^{M-1} G(\tilde{\mathbf{R}}_j,\tilde{\mathbf{R}}_{j+1},\tau) \times \Psi_{\mathcal{T}}(\tilde{\mathbf{R}}_0)$$

(expectation value is not normalized correctly if $R_M \neq \tilde{R}_M$, such as for OBDM)

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N}: \ \mathsf{1st \ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N}: \ \mathsf{2nd \ state} \\ \mathsf{Rb}_{2} \ \mathsf{on}^{4} \ \mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

PIGSMC sketch - classical isomorphism

imaginary time paths for 2 particles and 7 time slices ("beads"). path of particle 2 is cut in the center.

- each bead has weight $e^{-\alpha au V}$
- red lines: kinetic energy $e^{-(\mathbf{r}_i^{\tau} - \mathbf{r}_i^{\tau+1})^2/4D\tau}$
- end beads: trial wave function Ψ_T
- center bead: true ground state
 Ψ₀, unbiased by Ψ_T
- cut path in middle for off-diagonal properties such as OBDM caution: normalization
- Metropolis random walk using bisection method

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N} \colon \mathsf{1state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N} \colon \mathsf{2nd state} \\ \mathsf{Rb}_2 \text{ on } \mathsf{4He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

 $G(R, R', \tau)$...quasi-6th order PIGSMC, error[E_0]=O(τ^6) S. A. Chin and C. R. Chen, JCP'02 J. Casulleras, J. Boronat

Quasi-6th order PIGSMC

$$G_0(R_j, R_{j+1}, \tau) = \rho_F(R_j, R_{j+1}, \tau')\rho_V(R_j),$$

$$\rho_{V}(R_{j}) = \begin{cases} \exp \left[-\tau v_{0} V(R_{j})\right] & \text{if } j = 0 \text{ or } j = 2M \\ \exp \left[-2\tau v_{0} V(R_{j})\right] & \text{else if } (j \mod 3) = 0 \\ \exp \left[-\tau v_{1} V(R_{j}) - \frac{u_{0}\tau^{3}\hbar^{2}}{m} \sum_{i=1}^{N} |\nabla_{i} V(R_{j})|^{2}\right] & \text{else} \\ \tau' = \begin{cases} t_{1}\tau & \text{if } (j \mod 3) = 0 \\ t_{2}\tau & \text{else} \end{cases}. \end{cases}$$

 $\frac{1}{2}(1-\frac{1}{\sqrt{3}})\leqslant t_1\leqslant \frac{1}{2}$ is a free parameter. Optimal value for ⁴He: $t_1=0.265$

$$t_{2} = 1 - 2t_{1}$$

$$v_{0} = \frac{6t_{1}(t_{1} - 1) + 1}{12(t_{1} - 1)t_{1}}$$

$$v_{1} = \frac{1}{2} - v_{0}$$

$$u_{0} = \frac{1}{48} \left[\frac{1}{6(1 - t_{1})^{2}t_{1}} - 1\right]$$

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N: \ \mathsf{1st} \ \mathsf{state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N: \ \mathsf{2nd} \ \mathsf{state} \\ \mathsf{Rb}_2 \ \mathsf{on}^4 \ \mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results

Conclusion/Outlook

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Test of PIGSMC: bulk ⁴He

 $n(\bar{r}) = \frac{\rho_1(\bar{r})}{\rho_0}$ for bulk ⁴He at equilibrium density (N = 64, pbc):

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N}: 1 \text{ st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N}: 2 \text{ nd state} \\ \mathsf{Rb}_{2} \text{ on }^{4}\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results

Conclusion/Outlook

condensate fraction: $n(\overline{r} \rightarrow \infty) \approx 0.078$

One-Body Density matrix for $\ell = 0$, pure ⁴He droplet

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N}: \ \mathsf{1st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N}: \ \mathsf{2nd state} \\ \mathsf{Rb}_2 \ \mathsf{on}^4 \ \mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results

Conclusion/Outlook

One-Body Density matrix for $\ell = 0$, pure ⁴He droplet

Dipolar QG.

exciplexes, and surface condensate

SF_6He_N — Overview

plenty of experimental and theoretical work on doped ⁴He droplets

previous work on ⁴He around SF₆

experiment Goyal et al, JCP (1993) calculation R. N. Barnett, K. B. Whaley, JCP (1993); Spherical Model for SF₆

Model used in this work:

- SF₆ heavy ⇒ translational & rotational zero-point motion assumed negligible
- SF₆-He interaction assumed spherical

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N}: \ \mathsf{1st \ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N}: \ \mathsf{2nd \ state} \\ \mathsf{Rb}_{2} \ \mathsf{on}^{\pm}\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results

Conclusion/Outlook

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

SF_6He_N — Natural Orbitals of ⁴He

 \Rightarrow filling of 1st solvation "shell" depletes the condensate (... obviously)

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_{N} \colon \mathsf{1st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_{N} \colon \mathsf{2nd state} \\ \mathsf{Rb}_2 \text{ on }^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

SF₆He₂₀ — Solid or Liquid?

superfluid fraction about x-axis

$$f_x^s = 1 - rac{I_x}{I_x^{cl}} = rac{4m^2 \langle A_x^2
angle}{\hbar^2 eta \, I_x^{cl}}$$

Symmetry: $f_x^s = f_y^s = f_z^s$

PIMC simulation of SF₆He₂₀ @ 0.3K:

 $f^{s} = 1.00 \pm 0.02$

 \ldots as expected for an isotropic dopant surrounded by *liquid* ⁴He @ 0.3K.

- SF₆He₂₀ is not solid but 100% superfluid true anisotropic SF₆-He interaction: < 100% superfluid
- but BEC is supressed by interactions.

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

HENDI DMC and PIMC Interactions $Rb^{*1}He_N$: 1st state $Rb^{*2}He_N$: 2nd state Rb_2 on ⁴He Conclusion/Outlook

Surface Condensate

HENDI BEC in clusters PIGSMC Results

Conclusion/Outlook

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

SF_6He_N — Condensate fraction

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N : 1\mathsf{st} \text{ state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N : 2\mathsf{nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on } 4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

 condenstate fraction vanishes as ⁴He fills up 1st

• technical: no τ bias, small β bias (\Rightarrow improve $\Psi_T s$)

with occupation of 2nd

fraction increases, as

exemplified by N = 39...

"shell", condensate

solvation "shell"

SF_6He_N — Beyond 1st solvation "shell"

N = 39:

- no condensation in 1st "shell"
- about 2/3 of particles in 2nd "shell" are Bose condensed

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N \colon \mathsf{1st state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N \colon \mathsf{2nd state} \\ \mathsf{Rb}_2 \text{ on }^4\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

${\sf Conclusion}/{\sf Outlook}$

Conclusion:

- ▶ PIGSMC allows calculation of NO's with negligible, controllable Ψ_T bias
- non-monotonous N-dependence of condensate fraction due to layered growth of "shells"
- no condensate in 1st "shell"

Outlook:

- ▶ Investigate 2nd "shell" growth \longrightarrow
- How to deal with rotational symmetry breaking induced by realistic dopant-He interaction?
- theory: coupling between local BEC and dopant molecule dynamics?

 \rightarrow can local BEC be measured by HENDI spectroscopy?

(analog to bulk $^4\text{He:}$ high momentum transfer of neutrons \rightarrow condensate fraction)

(McKellar et al., PRL'06: oscillation of B_{eff} as function of N)

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb*-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1} \mathsf{He}_{\mathcal{N}} \colon \mathsf{1st} \text{ state} \\ \mathsf{Rb}^{\pm2} \mathsf{He}_{\mathcal{N}} \colon \mathsf{2nd} \text{ state} \\ \mathsf{Rb}_2 \text{ on } \mathsf{4He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

Acknowledgement

Exciplexes	Surface Condensate	G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer
Alexandra Viel Markku Leino Jean-Michel Launay Alexandre Zanchet Pavel Soldan	Johannes Mayrhofer	Dipolar QG Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook Rb*-He Exciplex
Institute of Physics of Rennes & CNRS OeAD: Amadée project FR14/2008		HENDI DMC and PIMC Interactions Rb* ¹ He _N : 1st state Rb* ² He _N : 2nd state Rb ₂ on ⁴ He Conclusion/Outlook
Simpatix @ Rennes IM, JKU: SGI Altix "Lilli"		Surface Condensate HENDI BEC in clusters PIGSMC Results Conclusion/Outlook
	Exciplexes Alexandra Viel Markku Leino Jean-Michel Launay Alexandre Zanchet Pavel Soldan Institute of Physics of Rennes & CNRS OeAD: Amadée project FR14/2008 Simpatix @ Rennes IM, JKU: SGI Altix "Lilli"	ExciplexesSurface CondensateAlexandra Viel Markku Leino Jean-Michel Launay Alexandre Zanchet Pavel SoldanJohannes MayrhoferInstitute of Physics of Rennes & CNRSImage: Condensate OeAD: Amadée project FR14/2008Image: Condensate Simpatix @ Rennes Image: M, JKU: SGI Altix "Lilli"

Dipolar QG,

exciplexes, and surface condensate <u>Robert E. Zillich</u> D. Hufnagl, E. Krotscheck;

Dipolar QG, exciplexes, and surface condensate

Robert E. Zillich

D. Hufnagl, E. Krotscheck; F. Mazzanti, G. Astrakharchik, J. Boronat; A. Viel, M. Leino; J. Mayrhofer

Dipolar QG

Intro (TD)HNC-EL 2D QG Quasi-2D QG Conclusion/Outlook

Rb^{*}-He Exciplex

 $\begin{array}{l} \mathsf{HENDI} \\ \mathsf{DMC} \text{ and } \mathsf{PIMC} \\ \mathsf{Interactions} \\ \mathsf{Rb}^{\pm1}\mathsf{He}_N; \ \mathsf{1st} \ \mathsf{state} \\ \mathsf{Rb}^{\pm2}\mathsf{He}_N; \ \mathsf{2nd} \ \mathsf{state} \\ \mathsf{Rb}_2 \ \mathsf{on}^{\pm4}\mathsf{He} \\ \mathsf{Conclusion/Outlook} \end{array}$

Surface Condensate

HENDI BEC in clusters PIGSMC Results Conclusion/Outlook

Thank you!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで