Squeezing and superposing many-body states of Bose gases in confining potentials

K. B. Whaley

Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and Computation Center UC Berkeley

Collaborators

Jonathan DuBois (currently at Quantum Simulations Group, LLNL)

Jan Korsbakken
Ignacio Cirac (Munich)

Outline

(1) from cold atoms to helium; quantum Monte Carlo methods
(2) squeezing trapped cold atoms - repulsive bosons in a double well
(3) mesocopic superposition states - attractive bosons and helium

Range of interactions

$$
\begin{gathered}
a<0 \\
{ }^{7} \mathrm{Li},{ }^{85} \mathrm{Rb}+\text { Feshbach, Cs }+ \text { Feshbach } \ldots
\end{gathered}
$$

BEC in a double well

- split condensate
- meso(macro)scopic coherences
- interference
- squeezing
- superpositions
- many-body tunneling

$$
\begin{aligned}
& a>0: \quad V_{e x t}(\mathbf{r})=x^{2}+y^{2}+z^{2}+V_{b}\left((z / l)^{2}-1\right)^{2} \\
& a<0: \quad V_{e x t}(\mathbf{r})=x^{2}+y^{2}+z^{2}+\frac{V_{b}}{\sqrt{2 \pi l}} e^{-(z / 2 l)^{2}}
\end{aligned}
$$

quantum Monte-Carlo Methods

given a general many-body bosonic problem

$$
\begin{equation*}
\mathcal{H}=\sum_{i}^{N} \frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+\sum_{i}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{i n t}\left(\mathbf{r}_{i j}\right) \tag{1}
\end{equation*}
$$

QMC solves for

- full many-body ground state $\Psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)$
- realistic interaction potentials $V\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)$
- exact : good for finding unexpected emergent behavior
- VPI: ground state energy, densities, $\rho\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ (the OBDM)
- fixed phase VPI, POITSE: excited states
- PIMC, PICF: finite temperature properties, excited states

the one body density matrix (OBDM)

For a general time dependent N particle many body state

$$
\boldsymbol{\Psi}_{N}=\sum_{i} c_{i} \psi^{(i)}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N} ; t\right)
$$

the single particle density matrix is

$$
\begin{gathered}
\rho\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)=\left\langle\hat{\Psi}^{\dagger}(\mathbf{r}, t) \hat{\Psi}\left(\mathbf{r}^{\prime}, t\right)\right\rangle \\
=N \sum_{i} c_{i} \int d \tilde{\mathbf{R}} \psi^{*(i)}(\mathbf{r}, \tilde{\mathbf{R}} ; t) \psi^{(i)}\left(\mathbf{r}^{\prime}, \tilde{\mathbf{R}} ; t\right)
\end{gathered}
$$

$$
\text { where } \tilde{\mathbf{R}}=\left\{\mathbf{r}_{2}, \cdots, \boldsymbol{r}_{N}\right\}
$$

natural orbitals

The OBDM is Hermitian and so can be diagonalized

$$
\rho\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{i} n_{i} \phi_{i}(\mathbf{r}) \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)
$$

where n_{i} are real and $\sum_{i} n_{i}=N . \phi_{i}(\mathbf{r})$ are the natural orbitals.

- simple condensate ::

$$
\lim _{N \rightarrow \infty} n_{0} / N \sim 1, \quad n_{\{i>0\}} / N \sim 0
$$

- fragmented condensate ::

$$
n_{\{0 \leq i \leq k\}} / N \sim 1, \quad n_{\{i>k\}} / N \sim 0
$$

fragmentation vs. depletion

- In strongly interacting quantum fluids (e.g. bulk He^{4}), even when there is only one single particle state with large occupation, the fraction of particles occupying ϕ_{0} can be very small $n_{0} \lesssim 10 \%$ while the rest of the eigenvalues of the OBDM still have essentially zero occupation in the thermodynamic limit.
- large depletion implies that the ground state is a highly entangled many body state (bulk $\mathrm{He} \sim 90 \%$ depletion)
- in contrast, a fragmented state has more than one single particle state with large occupation. Each of these states is a "real condensate" and is internally phase coherent.

VPI and the one-body density matrix

Variational path integral Monte Carlo (VPI):

- $T=0$, non-periodic paths in imaginary time. Probability of a path is

$$
\mathcal{P} \propto \Psi_{T}\left(R_{0}\right) \Psi_{T}\left(R_{2 M}\right)\left\{\prod_{m=0}^{2 M-1} G_{0}\left(R_{m}, R_{m+1} ; \tau\right)\right\}
$$

- At 'center' of the path, distribution is independent of Ψ_{T} for sufficiently long paths with length $=2 M \tau$
- The one-body reduced density matrix (OBDM) is defined as:

$$
\rho\left(r, r^{\prime}\right)=\int \psi^{*}\left(r, r_{2}, \ldots, r_{N}\right) \psi\left(r^{\prime}, r_{2}, \ldots, r_{N}\right) d r_{2} \ldots d r_{N}
$$

- Diagonalization of the OBDM yields the single-particle eigenfunctions (natural orbitals) and corresponding eigenvalues (occupation numbers)

Interaction potential models for cold atoms

- characterized by s wave scattering length
- $a>0$

$$
V_{i n t}\left(r_{i j}\right)=\left\{\begin{array}{rr}
0 & r_{i j}>a \\
\infty & r_{i j} \leq a
\end{array}\right.
$$

- $a<0$

$$
V_{i n t}\left(r_{i j}\right)=\epsilon\left(\left(\frac{\sigma}{r_{i j}}\right)^{12}-\left(\frac{\sigma}{r_{i j}}\right)^{6}\right)
$$

- semiclassical approximation
(VV Flambaum, GF Gribakin, C Harabati PRA 59, 1998 (1999))

$$
a \approx \cos \left(\frac{\pi}{4}\right)\left(\frac{\epsilon^{1 / 2} \sigma^{3}}{4}\right)^{1 / 2}\left[1-\tan \left(\frac{\pi}{4}\right) \tan \left(\gamma \sigma \sqrt{2 \epsilon}-\frac{\pi}{8}\right)\right] \frac{\Gamma(3 / 2)}{\Gamma(5 / 4)}
$$

- choose ϵ, σ to eliminate bound states

Propagators for VPI

$$
H=\sum_{i}^{N}-\frac{1}{2} \nabla_{i}^{2}+V(R)+\sum_{i<j} V_{i n t}\left(r_{i j}\right)
$$

spatial configuration

$$
R=\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \ldots, \mathbf{r}_{\mathbf{N}}
$$

external potential

$$
V(R)=\sum_{i} \frac{1}{2}\left(x_{i}^{2}+y_{i}^{2}+V_{b}\left[\left(z_{i} / \ell\right)^{2}-\right]^{2}\right)
$$

- $a<0$: 4th order propagator
- $a>0$: 4th order propagator for $T+V(R)$, modify for hard sphere $V_{\text {int }}\left(r_{i j}\right)$ with image construction

Modified 4th order propagator for hard sphere interactions

$$
\begin{aligned}
G\left(\mathbf{R}, \mathbf{R}^{\prime}, \tau\right)= & \int d \mathbf{R}^{\prime \prime} e^{-\tau / 6 V(\mathbf{R})} e^{-\tau / 2 T\left(\mathbf{R}, \mathbf{R}^{\prime \prime}\right)} \times \\
& e^{-2 \tau / 3 \tilde{V}\left(\mathbf{R}^{\prime \prime}\right)} e^{-\tau_{2} T\left(\mathbf{R}^{\prime \prime}, \mathbf{R}^{\prime}\right)} e^{-\tau / 6 V\left(\mathbf{R}^{\prime}\right)} \\
\tilde{V}= & V+\frac{\tau^{2}}{48}[V,[T, V]]
\end{aligned}
$$

- modify to restricted path Green's function $G^{r}\left(\mathbf{R}, \mathbf{R}^{\prime}, \tau\right)$, with

$$
G^{r}\left(\mathbf{R}, \mathbf{R}^{\prime}, \tau\right)=G\left(\mathbf{R}, \mathbf{R}^{\prime}, \tau\right)-G\left(I(\mathbf{R}), \mathbf{R}^{\prime}, \tau\right)
$$

- I(R) is the mirror reflection of R in the plane of the hard wall
- for hard sphere interactions, this gives image correction factor to first kinetic term

$$
G\left(r, r^{\prime}, \tau\right) \propto \prod_{i<j}\left[1-e^{-\left(r_{i j}-a\right)\left(r_{i j}^{\prime}-a\right) / \lambda \tau}\right]
$$

$a>0$: Ground state energetics

- energy grows more slowly with higher barriers, suggests increasing fragmentation
- deviations from mean field with increasing N and larger a values

${ }^{a}$ DMC, $a=0.01$

$a>0$: Natural orbitals

Finite Size Effects on Fragmentation

- occupation of lowest symmetric natural orbital as function of a / a_{\perp}
- a_{\perp} is perpendicular trap length, $0.1 \leq a / a_{h o} \leq 0.5, N=64$
- expect more fragmentation as a increases
- see non-monotonic dependence because a approaches length scale of trapping potential

$a>0$: squeezed states

$P(\Delta N)=2\left\langle\delta\left(\sum_{i} \Theta\left(z_{i}\right)-N_{R}\right)\right\rangle-N$

$$
N=64, \quad a / a_{h o}=0.01, \quad n a^{3} \approx 1.5 \times 10^{-4},
$$

$$
V_{b}=5
$$

$a>0$: squeezed states

$a>0$: squeezed states

$a>0$: squeezed states

$$
\Psi \approx|N / 2, N / 2\rangle
$$

$$
N=64, \quad a / a_{h o}=0.01, \quad n a^{3} \approx 2.7 \times 10^{-4}, \quad V_{b}=40
$$

Scaling of number fluctuations with interaction strength

- large N analytic two mode invalid
- $N=128$ is too few particles - compare exact diagonalization
- or two mode Hamiltonian is not valid in this regime $\delta=5 \times 10^{-4}$, $10^{-2}<a / a_{h o}<0.3$

Analytic two mode (based on harmonic analysis in large N limit):

$$
\Delta n=\sqrt{N / 4}(\delta /(\delta+4 N \kappa))^{1 / 4}
$$

for $\kappa>N \delta / 2^{8 / 3} \approx 0.01$

$$
\Delta n=\delta N /(8 \sqrt{2} \kappa)
$$

$a>0$: Tunneling energetics

- excited state energy gives effective tunneling which decreases for higher barrier
- tunneling depends on N and a
- strong finite size effects for high barrier

$a<0$: cat states possible

ideal cat

non-ideal cat

Distinguishability Measure of Cat State Size

 consider 2-branch cat state $|A\rangle+|B\rangle$- define cat size as the largest number of partitions, such that branches can be distinguished with probability $1-\delta$ by measuring any one of the partitions
- or, if all particles are equivalent: $N / n_{\text {min }}$, where $n_{\text {min }}$ is the smallest number of particles that must be measured
- \rightarrow branch distinguishability problem: determine which of two possible states, $|A\rangle$ or $|B\rangle$, a given unknown state is
- motivated by recognition that $\frac{1}{\sqrt{2}}(|0000 \cdots\rangle+|1111 \cdots\rangle)$ requires only 1 measurement if $\langle 0 \mid 1\rangle=0$ but more if $\langle 0 \mid 1\rangle \neq 0$ [Korsbakken, Whaley, DuBois, Cirac PRA (2007)]

How to distinguish branches

How do we describe a measurement to distinguish branches of cat-like state $|A\rangle+|B\rangle$?

- Outcomes of measurement associated with POVM elements E_{A} and E_{B}

Positive Operator Valued Measurements

Generalization of projective measurements. Set $\left\{E_{i}\right\}$ of non-negative Hermitian operators satisfying $\sum_{i} E_{i}=\mathbb{I}$. Probability of outcome i for density matrix ρ is $P_{i}=\operatorname{tr}\left(\rho E_{i}\right)$.

- Success probability given by

$$
P=\frac{1}{2} \operatorname{tr}\left(|A\rangle\langle A| E_{A}\right)+\frac{1}{2} \operatorname{tr}\left(|B\rangle\langle B| E_{B}\right)
$$

- For an n-particle measurement, this reduces to

$$
P=\frac{1}{2} \operatorname{tr}\left(\rho_{A}^{(n)} E_{A}^{(n)}\right)+\frac{1}{2} \operatorname{tr}\left(\rho_{B}^{(n)} E_{B}^{(n)}\right), \quad E_{A, B} \equiv E_{A, B}^{(n)} \otimes \mathbb{I}^{(N-n)}
$$

where $\rho_{A, B}^{(n)}$ are n-particle reduced density matrices

- Optimal measurement is projective measurement in the basis where $\rho_{A}^{(n)}-\rho_{B}^{(n)}$ is diagonal
- Corresponding success probability is (Helstrom 1976):

$$
P=\frac{1}{2}+\frac{1}{4} \operatorname{tr}\left\|\rho_{A}^{(n)}-\rho_{B}^{(n)}\right\|
$$

- If each branch is a separable state, same success probability is obtained with an adaptive scheme using only one-particle non-entangled measurements (PRA 75042106 (2007))
- fit QMC fluctuation number distribution $P(\Delta N)$ to form obtained from 2-state model

$$
\begin{gathered}
\int \mathrm{d} \theta f(\theta)\left[\left(\hat{a}^{\dagger} \cos \theta+\hat{b}^{\dagger} \sin \theta\right)^{N}+\left(\hat{a}^{\dagger} \sin \theta+\hat{b}^{\dagger} \cos \theta\right)^{N}\right]|0\rangle \\
f(\theta)=C_{\mathcal{N}} \exp \left(\frac{-\left(\theta-\theta_{0}\right)^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

- orthogonal branches for $\theta_{0}=0$
- completely overlapping branches for $\theta_{0}= \pm \pi / 4$
- σ measures spread of branches (also causes overlap)
- n-RDM calculations possible with this form, yields cat size C_{δ}
- Korsbakken, DuBois, Cirac, Whaley, PRA 2007

: Number distribution

$P(\Delta N)=2\left\langle\delta\left(\sum_{i} \Theta\left(z_{i}\right)-N_{R}\right)\right\rangle-N$
$\mathrm{N}=40, \mathrm{~N}|a| / a_{h o}=0.11, V_{b}=10 \hbar \omega$

: Number distribution

$$
\begin{aligned}
& \text { size } \\
& \begin{array}{l}
C_{\delta}=0 \\
\delta=10^{-2}
\end{array}
\end{aligned}
$$

$N=40, N|a| / a_{h o}=0.11, V_{b}=10 \hbar \omega$

: Number distribution

$$
\mathrm{N}=40, \mathrm{~N}|a| / a_{h o}=0.11, V_{b}=15 \hbar \omega
$$

: Number distribution

size
$C_{\delta}=10$
$\delta=10^{-2}$

$\mathrm{N}=40, \mathrm{~N}|a| / a_{h o}=0.11, V_{b}=15 \hbar \omega$

: Number distribution

$N=40, N|a| / a_{h o}=0.11, V_{b}=20 \hbar \omega$

: Number distribution

$$
\begin{aligned}
& \text { size } \\
& C_{\delta}=20 \\
& \delta=10^{-2}
\end{aligned}
$$

$N=40, N|a| / a_{h o}=0.11, V_{b}=20 \hbar \omega$

: Number distribution

$\mathrm{N}=40, \mathrm{~N}|a| / a_{h o}=0.22, V_{b}=120 \hbar \omega$

: Number distribution

liquid ${ }^{4} \mathrm{He}$ in a double well potential

${ }^{4} \mathrm{He}$ in a double well : parameters

- Aziz-1992 potential
- $N=20$
- barrier width $a_{b}=0.15 \AA$
- barrier height 10 K
- trap frequency $\omega=0.1 \mathrm{~Hz}$

Cats in liquid ${ }^{4} \mathrm{He}: \mathrm{N}=20$

cattiness at $\mathrm{T}=0.31 \mathrm{~K}$ (cold cat)

$$
\text { for } \delta=0.01, C_{\delta}=10 ; \text { for } \delta=10^{-5}, C_{\delta}=5
$$

Summary

- VPI for strongly interacting bosons in double well potential
- repulsive bosons - finite size effects on squeezing
- attractive bosons - cat states, also for helium
- validity of two mode approximations
- excitations...

