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The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

A microscopic look at quantum fluids Generica



The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

Uext(ri) are ion–core (or some other external) potentials

A microscopic look at quantum fluids Generica



The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

Uext(ri) are ion–core (or some other external) potentials

v(|ri − rj |) the pair–interaction

A microscopic look at quantum fluids Generica



The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

Uext(ri) are ion–core (or some other external) potentials

v(|ri − rj |) the pair–interaction

(Truly) ab initio methods:

A microscopic look at quantum fluids Generica



The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

Uext(ri) are ion–core (or some other external) potentials

v(|ri − rj |) the pair–interaction

(Truly) ab initio methods:
Green’s functions methods

to get stuck

Included textbook knowledge

permitted amplituide of handwaving

A microscopic look at quantum fluids Generica



The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

Uext(ri) are ion–core (or some other external) potentials

v(|ri − rj |) the pair–interaction

(Truly) ab initio methods:
Green’s functions methods

to get stuck

Simulation (Monte Carlo)
to have it expensive

Included textbook knowledge

permitted amplituide of handwaving

A microscopic look at quantum fluids Generica



The Many–Body Problem
..the way it should be solved for a robust theory

Microscopic Hamiltonian

H =
∑

i

[

−
~

2

2m
∇2

i + Uext(ri)

]

+
∑

i<j

v(|ri − rj |)

Uext(ri) are ion–core (or some other external) potentials

v(|ri − rj |) the pair–interaction

(Truly) ab initio methods:
Green’s functions methods

to get stuck

Simulation (Monte Carlo)
to have it expensive

Variational methods
to have simple and consistent
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Methods: Correlated wave functions
For those who like it simple..

What looked like a “simple quick and dirty” method (Jastrow):

Ψ0(1, . . . , N) = exp
1
2





∑

i

u1(ri) +
∑

i<j

u2(ri , rj) + . . .



Φ0(1, . . . , N)

≡ F (1, . . . , N)Φ0(1, . . . , N)

Φ0(1, . . . , N) “Model wave function”
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An intuitive way to include
inhomogeneity and core exclusion;
Diagram summation methods from
classical statistics (HNC, PY, BGY);
Optimization δE/δun = 0 makes
correlations unique.
Express everything in terms of
physical observables (i.e. g(r)).
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Two-body Euler equations: δE/δu2 = 0
Summarizing its two faces

“RPA” face (Campbell, Feenberg 1969)

χ(RPA)(q, ω) =
χ0(q, ω)

1 − Ṽp-h(q)χ0(q, ω)

S(q) = −
~

π

∫

dω ℑm χ(q, ω)

=
[

1 + 4mṼp−h(q)/~
2q2
]−1/2
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1 − Ṽp-h(q)χ0(q, ω)

S(q) = −
~

π

∫

dω ℑm χ(q, ω)

=
[
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√
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Consistency between S(q) and g(r)

“...it appears that the
optimized Jastrow
function is capable
of summing all rings
and ladders, and
partially all other
diagrams, to infinite
order.”

H.-K. Sim, C.-W. Woo
and J. R. Buchler,
Phys Rev. A2, 2024
(1970).
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Application I: How well it works in the bulk
Bragbook :)

Equation of state
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Application I: How well it works in the bulk
Bragbook :)

Equation of state

Distribution and structure
functions

Many other quantities, for
example impurity properties
(Example: Mg impurities,
note the huge core)
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Applications:
Thin gaps, dislocations

Another example:

Two rigid walls at
double-layer distance
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Dynamics – logical extension
Equations of motion

Wave function for excited states:

|Ψ(t)〉 = e−iE0t/~
Fe

1
2 δU |Ψ0〉

〈Ψ0|e
1
2 δU†

F †Fe
1
2 δU |Ψ0〉]1/2

,

|Ψ0〉: model ground state, δU(t): excitation operator
Bosons:

δU(t) =
∑

i

δu(1)(ri ; t) +
∑

i<j

δu(2)(ri , rj ; t) + . . .

Fermions:

δU(t) =
∑

p h

δu(1)
p,h(t)a†

pah +
∑

p h p′ h′

δu(2)
p h ,p′h′(t)a

†
p a†

p′ah ah′ + . . .

Action principle:

δS = δ

∫ t2

t1
dt
〈

Ψ(t)

∣

∣

∣

∣

H + Uext(t) − i~
∂

∂t

∣

∣

∣

∣

Ψ(t)
〉

= 0.

Dynamics Multiparticle fluctuations and equations of motion



Linear response:
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Linear response:
The generic way to go

Linearization:
|Ψ(t)〉 = δ |Ψ(t)〉 + |Ψ0〉

Induced fluctuations:

δ1ρ(r; t) ∼
〈

Ψ0 | ρ̂(r) | δΨ(t)
〉

+ c.c.

δ1j(r; t) ∼
〈

Ψ0 | ĵ(r) | δΨ(t)
〉

+ c.c.

Dynamic response function:

δρ(r, ω) =

∫

d3r ′χ(r, r′; ω)Uext(r
′, ω)

Dynamic structure function:

S(r, r′; ω) = −
1
π
ℑm χ(r, r′; ω)

Dynamics Multiparticle fluctuations and equations of motion



Rationalization of multiparticle fluctuations

“Feynman approximation”
δu(2)(r, r′) = 0 leads to

~ω(k) =
~

2k2

2mS(k)
:

off by a factor of two;
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Rationalization of multiparticle fluctuations

“Feynman approximation”
δu(2)(r, r′) = 0 leads to

~ω(k) =
~

2k2

2mS(k)
:

off by a factor of two;

One-body fluctuations are
insufficient to understand the
excitations in 4He;

Pair fluctuations should become
important if the wavelength of
excitations is comparable to
inter-particle distance.

Expect a similar effect in 3He.
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Boson equations of motion
Where the hard work begins – sorry for becoming technical

Include pair and triplet fluctuations δu(n)(r1, . . . , rn), n = 1..3
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d3r1d3r2
δρ1(r)

δu2(r1, r2)
δu2(r1, r2; t)

+

∫

d3r1d3r2d3r3
δρ1(r)

δu3(r1, r2, r3)
δu3(r1, r2, r3; t) .

The key step:Define δv1(r; t) by

δρ1(r; t) ≡
∫

d3r1
δρ1(r)
δu1(r1)

δv1(r1; t)

Invert the relationship in terms of “direct correlation functions”.

Dynamics Multiparticle fluctuations and equations of motion



Same thing for pair fluctuations:

δg2(r, r′; t) =

∫

d3r1
δg2(r, r′)
δu1(r1)

δu1(r1; t)

+

∫

d3r1d3r2
δg2(r, r′)
δu2(r1, r2)

δu2(r1, r2; t)

+

∫

d3r1d3r2d3r3
δg2(r, r′)

δu3(r1, r2, r3)
δu3(r1, r2, r3; t)

≡

∫

d3r1
δg2(r, r′)
δv1(r1)

δv1(r1; t)

+

∫

d3r1d3r2
δg2(r, r′)
δu2(r1, r2)

δv2(r1, r2; t) .
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Same thing for pair fluctuations:

δg2(r, r′; t) =

∫

d3r1
δg2(r, r′)
δu1(r1)

δu1(r1; t)

+

∫

d3r1d3r2
δg2(r, r′)
δu2(r1, r2)

δu2(r1, r2; t)

+

∫

d3r1d3r2d3r3
δg2(r, r′)

δu3(r1, r2, r3)
δu3(r1, r2, r3; t)

≡

∫

d3r1
δg2(r, r′)
δv1(r1)

δv1(r1; t)

+

∫

d3r1d3r2
δg2(r, r′)
δu2(r1, r2)

δv2(r1, r2; t) .

Invert the relationship in terms of “direct correlation functions”.
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Lagrangian in the new variables:

L(t) =

〈

Ψ(t)

∣

∣

∣

∣

H + Uext(t) − i~
∂

∂t

∣

∣

∣

∣

Ψ(t)
〉

= Lext(t) + Lt(t) + Lint(t)

Equations of motion:
δL

δv∗
n
(r1, . . . rn; t) = 0

External Field term:

Lext(t) =

∫

d3rUext(r)δρ1(r; t) = ℜe
[
∫

d3rUext(r)
δρ1(r)
δu1(r′)

δv1(r′; t)
]

The external field term contributes only to the one-body equation !

Dynamics Multiparticle fluctuations and equations of motion



Lagrangian in the new coordinates:
Time-derivative Term:

Lt(t) = −
i~
4

[

〈Ψ0| δU∗δU̇ |Ψ0〉 − 〈Ψ0| δU∗ |Ψ0〉 〈Ψ0| δU̇ |Ψ0〉
]

δLt(t)
δv∗

n (r1, . . . , rn; t)
=

i~
4n!

∫

d3r ′1 . . . d3r ′n
δρn(r1, . . . , rn)

δun(r′1, . . . , r′n)
δv̇n(r′1, . . . , r′n; t) .

The time-derivative term is diagonal in the new variables
Current: For Jastrow-correlations, j(r; t) does not depend on δv3(ri ; t):

j(r; t)
ρ1(r)

=
~

2mi

[

∇δv1(r; t) −
1
2

∫

d3r1d3r2δv2(r1, r2; t)∇r
δρ2(r1, r2)

δρ1(r)

]

even if fluctuating triplet correlations are included.
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Lagrangian in the new coordinates:
Interaction term

Lint(t) =
m
2

∫

d3ρ |v(r; t)|2 +
3
∑

i,j=2

L
(ij)
int (t)

Velocity field v(r; t) = j(r; t)/ρ(r) does not depend on δv3.

L
(ij)
int (t) is a symmetric quadratic form of δv2 and δv3.

Two- and three-body equations:

ρ1(r1)ρ1(r2) [E22(ω) ∗ δv2(ω) + E23 ∗ δv3(ω)] (r1, r2; ω)

= i~
∫

d3r3 j(r3; ω) · ∇r3

δρ(r1, r2)

δρ1(r3)

0 = ρ1(r1)ρ1(r2) [E32 ∗ δv2(ω) + E33(ω) ∗ δv3(ω)] (r1, r2, r3; ω)

⇒ External field appears only in the one-body equation

Dynamics Multiparticle fluctuations and equations of motion



General pair equation:
Starting point for approximations

General pair equation:

[E(ω) ∗ δv2(ω)] (r1, r2; ω) =
i~
ρ2

1

∫

d3r3 j(r3; ω) · ∇r3

δρ2(r1, r2)

δρ1(r3)

E(ω) = E22(ω) − E23 ∗ E
−1
33 (ω) ∗ E32

Eii(ω) = Tii − ~ωGii i = 1, 2

Note: E23 is energy independent due to choice of variables
δvi(r1, . . . ; t).

Dynamics Generic self-energy



General structure of the solution
After lenghty algebra. . .

Response function

χ(q, ω) = [G(q, ω) + G∗(q,−ω)]
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General structure of the solution
After lenghty algebra. . .

Response function

χ(q, ω) = [G(q, ω) + G∗(q,−ω)]

Phonon propagator

G(q, ω) = S(q) [~ω + iη − Σ(q, ω)]−1
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General structure of the solution
After lenghty algebra. . .

Response function

χ(q, ω) = [G(q, ω) + G∗(q,−ω)]

Phonon propagator

G(q, ω) = S(q) [~ω + iη − Σ(q, ω)]−1

Self-energy

Σ(q, ω) = ε(q) −
1
2

∑

qi

〈q|V (3) |q1, q2〉 E
−1(ω)

〈

q′
1q′

2

∣

∣V (3) |q〉

The only freedom is how to calculate the ingredients

Dynamics Generic self-energy



Sum rules
some rigorous conclusions

General structure of the energy denominator:

E(ω) = E22(ω) − E23 ∗ E
−1
33 (ω) ∗ E32 = E22(ω) + O(ω−1)

Eii(ω) = Tii − ~ωGii i = 2, 3
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Sum rules
some rigorous conclusions

General structure of the energy denominator:

E(ω) = E22(ω) − E23 ∗ E
−1
33 (ω) ∗ E32 = E22(ω) + O(ω−1)

Eii(ω) = Tii − ~ωGii i = 2, 3

Therefore

χ1−body (q; ω) ∼ ω−2 as ω → ∞

χ2−body (q; ω) − χ1−body (q; ω) ∼ ω−4 as ω → ∞

χ3−body (q; ω) − χ2−body (q; ω) ∼ ω−6 as ω → ∞ .
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Sum rules
some rigorous conclusions

General structure of the energy denominator:

E(ω) = E22(ω) − E23 ∗ E
−1
33 (ω) ∗ E32 = E22(ω) + O(ω−1)

Eii(ω) = Tii − ~ωGii i = 2, 3

Therefore

χ1−body (q; ω) ∼ ω−2 as ω → ∞

χ2−body (q; ω) − χ1−body (q; ω) ∼ ω−4 as ω → ∞

χ3−body (q; ω) − χ2−body (q; ω) ∼ ω−6 as ω → ∞ .

Sum rules up to ω3 are exactly satisfied
already in pair fluctuation approximation.
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Sum rules
some rigorous conclusions

General structure of the energy denominator:

E(ω) = E22(ω) − E23 ∗ E
−1
33 (ω) ∗ E32 = E22(ω) + O(ω−1)

Eii(ω) = Tii − ~ωGii i = 2, 3

Therefore

χ1−body (q; ω) ∼ ω−2 as ω → ∞

χ2−body (q; ω) − χ1−body (q; ω) ∼ ω−4 as ω → ∞

χ3−body (q; ω) − χ2−body (q; ω) ∼ ω−6 as ω → ∞ .

Sum rules up to ω3 are exactly satisfied
already in pair fluctuation approximation.

Note the consequences for the ground state theory !
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General structure of the solution
Where it all boins down to

Self-energy

Σ(q, ω) = ε(q) −
1
2

∑

qi

〈q|V (3) |q1, q2〉 E
−1(ω)

〈

q′
1q′

2

∣

∣V (3) |q〉

The only freedom is how to calculate the ingredients

Hiearchy of approximations:

‘Uniform Limit Approximation”-approximation: E(ω) is diagonal im
momentum space (not limited to pair fluctuations).

Pair-Approximation: E(ω) = E22(ω) = T22 − ~ωG22

Full HNC+”elementaries”+”triplets” implementation of the pair
theory

Note: “Uniform-Limit” + “pair-approximation” = BW-CBF result by
Jackson, Feenberg, Campbell

Dynamics Generic self-energy



Diagrammatic analysis

General “energy denominator”

E22(r1, r2; r′1, r′2; ~ω) = −~ωG22(r1, r2; r′1, r′2)

−
~

2

2ρ1m
∇1 ·

[

δ(r1 − r′1)F22(r1; r2, r′2)
]

∇′
1 + {1, 1′} ↔ {2, 2′}

Dynamics Diagrammatic analysis in pair approximation



Diagrammatic analysis

General “energy denominator”

E22(r1, r2; r′1, r′2; ~ω) = −~ωG22(r1, r2; r′1, r′2)

−
~

2

2ρ1m
∇1 ·

[

δ(r1 − r′1)F22(r1; r2, r′2)
]

∇′
1 + {1, 1′} ↔ {2, 2′}

“Kinetic energy”

F22(r1; r2, r3) = g2(r1, r2)
δ(r2 − r3)

ρ1
+ g3(r1, r2, r3) − g2(r1, r2)g2(r1, r3)

Long-wavelength property:

ρ1

∫

d3r2F22(r1; r2, r3) = 0

group like-colored diagrams !

r1

r2

r3 r1

r2

r3
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Diagrammatic analysis

General “energy denominator”

E22(r1, r2; r′1, r′2; ~ω) = −~ωG22(r1, r2; r′1, r′2)

−
~

2

2ρ1m
∇1 ·

[

δ(r1 − r′1)F22(r1; r2, r′2)
]

∇′
1 + {1, 1′} ↔ {2, 2′}

“Kinetic energy”

F22(r1; r2, r3) = g2(r1, r2)
δ(r2 − r3)

ρ1
+ g3(r1, r2, r3) − g2(r1, r2)g2(r1, r3)

Short-distance property:

F22(r1; r2, r3) → 0 as |r1 − r{2,3}| → 0

group like-colored diagrams !

r1

r2

r3 r1

r2

r3
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Diagrammatic analysis

General “energy denominator”

E22(r1, r2; r′1, r′2; ~ω) = −~ωG22(r1, r2; r′1, r′2)

−
~

2

2ρ1m
∇1 ·

[

δ(r1 − r′1)F22(r1; r2, r′2)
]

∇′
1 + {1, 1′} ↔ {2, 2′}

“Kinetic energy”

F22(r1; r2, r3) = g2(r1, r2)
δ(r2 − r3)

ρ1
+ g3(r1, r2, r3) − g2(r1, r2)g2(r1, r3)

Must sum infinitely many diagrams !

“Convolution dapproximation” omits
all but two

Similar analysis for G22(r1, r2; r′1, r′2)

r1

r2

r3 r1

r2

r3
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Diagrammatic analysis

The driving term:

1
ρ2

1

δρ2(r1, r2)

δρ1(r3)
=

1
ρ1

g(r1 − r2) [δ(r1 − r3) + δ(r1 − r3)] +
δg(r1, r2)

δρ1(r3)

Defined in terms of multiparticle densities !
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Diagrammatic analysis

The driving term:

1
ρ2

1

δρ2(r1, r2)

δρ1(r3)
=

1
ρ1

g(r1 − r2) [δ(r1 − r3) + δ(r1 − r3)] +
δg(r1, r2)

δρ1(r3)

Defined in terms of multiparticle densities !
Long-wavelenth property:

ρ1

∫

d3r1
δg(r1, r2)

δρ1(r3)
= − [g(r2, r3) − 1]

group like-colored diagrams !

r1

r2

r3
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Diagrammatic analysis

The driving term:

1
ρ2

1

δρ2(r1, r2)

δρ1(r3)
=

1
ρ1

g(r1 − r2) [δ(r1 − r3) + δ(r1 − r3)] +
δg(r1, r2)

δρ1(r3)

Defined in terms of multiparticle densities !

Short-distance property:

δg(r1, r2)

δρ1(r3)
→ 0 as |r1 − r2| → 0

group like-colored diagrams !

r1

r2

r3
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Diagrammatic analysis

The driving term:

1
ρ2

1

δρ2(r1, r2)

δρ1(r3)
=

1
ρ1

g(r1 − r2) [δ(r1 − r3) + δ(r1 − r3)] +
δg(r1, r2)

δρ1(r3)

Defined in terms of multiparticle densities !
Summarizing:

Must sum infinitely many diagrams !

“Convolution approximation” keeps
only the first

Triplets must be added

r1

r2

r3

Dynamics Diagrammatic analysis in pair approximation



Bulk 4He
One and two-phonon excitations

RPA: δu2..(ri , rj , . . . ; t) = 0
Correct long wavelength limit;
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Bulk 4He
One and two-phonon excitations

RPA: δu2..(ri , rj , . . . ; t) = 0
Correct long wavelength limit;

No multi-phonon processes;

Pair fluctuations:

Includes “Phonon-splitting”;

“All the works” just as good
(or bad) as CA !

CA will do for most purposes

“Plateu” still missing

Applications: Bulk 4He
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Include triplet fluctuations δu(3)(r, r′, r”)
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Going beyond:
Three-phonon excitations

Include triplet fluctuations δu(3)(r, r′, r”)

“Uniform limit” is sufficient !

Technical details complicated and messy, but we get a plausible
expression:

Σ(3)(q, ω) = ε(q)−
1
2

∑

q1q2

∣

∣〈q|V (3) |q1, q2〉
∣

∣

2

Σ(2)(q1, ω − ε(q2)) + Σ(2)(q2, ω − ε(q1)) − ~

Applications: Bulk 4He



Going beyond:
Three-phonon excitations

Include triplet fluctuations δu(3)(r, r′, r”)

“Uniform limit” is sufficient !

Technical details complicated and messy, but we get a plausible
expression:

Σ(2)(q, ω) = ε(q) −
1
2

∑

q1q2

∣

∣〈q|V (3) |q1, q2〉
∣

∣

2

ε(q1) + ε(q2) − ~ω

Using Feynman energies in the denominator falls back to BW-CBF
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Going beyond:
Three-phonon excitations

Include triplet fluctuations δu(3)(r, r′, r”)

“Uniform limit” is sufficient !

Technical details complicated and messy, but we get a plausible
expression:

Σ(q, ω) = ε(q) −
1
2

∑

q1q2

∣

∣〈q|V (3) |q1, q2〉
∣

∣

2

Σ(q1, ω − ε(q2)) + Σ(q2, ω − ε(q1)) − ~ω

Using Feynman energies in the denominator falls back to BW-CBF

With some precognition replace the Feynman energies by full
self-energies.

Applications: Bulk 4He
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Convolution approximation
(BW-CBF)
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Self-consistent self-energy

Convolution approximation
(BW-CBF)

1st iteration self-consistency

2nd iteration self-consistency

Summarizing:

Iterations quite easy

Triplet-Vertex about 10 percent
short

Converges –expectedly– to
plateau
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Three-phonon excitations
.. and beyond...

Self-consistent self-energy

Convolution approximation
(BW-CBF)

1st iteration self-consistency

2nd iteration self-consistency

Summarizing:

Iterations quite easy

Triplet-Vertex about 10 percent
short

Converges –expectedly– to
plateau

Inhomogeneous
generalization possible

Applications: Bulk 4He



Fully confined fluids:
Layer rotons - 2D rotons ?
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Fully confined fluids:
A bit on solid 4He

Neutron scatterin on solid
4He (Lauter and Godfrin,
ILL)

Subtract off Bragg peaks

Clear presence of two
rotons below bulk roton

One of the “rotons”
disapppears after
annealing

Comparison with theory:
System must contain at
least liquid double-layers

Applications: Quasi-2D dynamics



Fermions: What we are after
Understanding the dynamics of 3He in 3D and 2D

What we were told in (some)
textbooks:
Dynamic structure function:
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in density fluctuations;

Experiments: H. Godfrin (with H. R. Glyde, B. Faak, et al.) Phys. Rev. B 61, 1421, 2000.
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Fermions: What we are after
Understanding the dynamics of 3He in 3D and 2D

What we were told in (some)
textbooks:
Dynamic structure function:

S(q, ω) =
1
π
ℑm χ(q, ω)

Random Phase approximation:

χ(q, ω) =
χ0(q, ω)

1 − Ṽp−h(q)χ0(q, ω)

Collective mode at

1 − Ṽp−h(q)χ0(q, ω(q)) = 0

Particle-hole continuum at

e(q − kF ) ≤ ~ω ≤ e(q + kF )

CRPA - 3D
m* = 1

E
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)
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interested (for the time being)
in density fluctuations;

similar effect as for bosons:
RPA is too high compared to
experiments.

Experiments: H. Godfrin (with H. R. Glyde, B. Faak, et al.) Phys. Rev. B 61, 1421, 2000.
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Messing with (effective) masses:
the solution (or not ?)

Recall where we
started

An effective mass can
(potentially) explain
S(q, ω)

BUT the effective
mass is far from
constant

BUT an effective
mass messes up sum
rules
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Messing with (effective) masses:
the solution (or not ?)

Recall where we
started

An effective mass can
(potentially) explain
S(q, ω)

BUT the effective
mass is far from
constant

BUT an effective
mass messes up sum
rules
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Messing with (effective) masses:
the solution (or not ?)

Recall where we
started

An effective mass can
(potentially) explain
S(q, ω)

BUT the effective
mass is far from
constant

BUT an effective
mass messes up sum
rules
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Messing with (effective) masses:
the solution (or not ?)

Recall where we
started

An effective mass can
(potentially) explain
S(q, ω)

BUT the effective
mass is far from
constant

BUT an effective
mass messes up sum
rules
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m0(q) ≡

∫ ∞

0
d(~ω)S(q, ω) = S(q)

m1(q) ≡

∫ ∞

0
d(~ω)(~ω)S(q, ω) =

~
2q2

2m
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S(k , ω) in two dimensional 3He – the key experiment
ILL/CNRS measurements: Godfrin, Lauter, Meschke
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ILL/CNRS measurements: Godfrin, Lauter, Meschke

RPA gives wrong position of the collective mode relative to the
continuum;

m∗
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RPA gives wrong position of the collective mode relative to the
continuum;
Messing with m∗ does not help !
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ILL/CNRS measurements: Godfrin, Lauter, Meschke

RPA gives wrong position of the collective mode relative to the
continuum;
Messing with m∗ does not help !
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S(k , ω) in two dimensional 3He – the key experiment
ILL/CNRS measurements: Godfrin, Lauter, Meschke

RPA gives wrong position of the collective mode relative to the
continuum;
Messing with m∗ does not help !
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S(k , ω) in two dimensional 3He – the key experiment
ILL/CNRS measurements: Godfrin, Lauter, Meschke

RPA gives wrong position of the collective mode relative to the
continuum;
Messing with m∗ does not help !
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S(k , ω) in two dimensional 3He
More observations

m∗ grows with density – RPA would then
predict that the collective mode comes
down with density. But the collective
mode goes up
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S(k , ω) in two dimensional 3He
More observations

m∗ grows with density – RPA would then
predict that the collective mode comes
down with density. But the collective
mode goes up
We must either lower the collective mode
through the continuum or demonstrate a
significant “pair excitation continuum”
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S(k , ω) in two dimensional 3He
More observations

m∗ grows with density – RPA would then
predict that the collective mode comes
down with density. But the collective
mode goes up
We must either lower the collective mode
through the continuum or demonstrate a
significant “pair excitation continuum”

There is every reason to expect that “pair
excitations” are in 3He just as important
as in 4He.
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Pair excitations for Fermions
The big challenge

Recall EOM for bosons:
Wave function for excited states:

|Ψ(t)〉 = e−iE0t/~
Fe

1
2 δU |Ψ0〉

〈Ψ0|e
1
2 δU†

F †Fe
1
2 δU |Ψ0〉]1/2

,

|Ψ0〉: model ground state, δU(t): excitation operator
Bosons:

δU(t) =
∑

i

δu(1)(ri ; t) +
∑

i<j

δu(2)(ri , rj ; t) + . . .

Fermions:

δU(t) =
∑

p,h

δu(1)
p,h(t)a†

pah +
∑

p,h,p′,h′

δu(2)
p,h,p′,h′(t)a

†
pa†

p′ahah′

• The problem is the sheer number of variables together with
exchange diagrams !
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Pair excitations for Fermions
The essence of the theory — Thouless’ book and beyond

δu(2)
ph,p′h′(t) = 0, F = 1, weakly interacting Hamiltonian:

(

eph − ~ω + V (A)
ph′,hp′ V (B)

pp′,hh′

V (B)
hh,pp′ eph + ~ω + V (A)

hp′,ph′

)(

δu(1)
ph

δu∗(1)
ph

)

=

(

U(ext)
ph

U∗(ext)
ph

)
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Pair excitations for Fermions
The essence of the theory — Thouless’ book and beyond

δu(2)
ph,p′h′(t) = 0, F = 1, weakly interacting Hamiltonian:

(

eph − ~ω + V (A)
ph′,hp′ V (B)

pp′,hh′

V (B)
hh,pp′ eph + ~ω + V (A)

hp′,ph′

)(

δu(1)
ph

δu∗(1)
ph

)

=

(

U(ext)
ph

U∗(ext)
ph

)

Set V (A)
ph′,hp′ = V (B)

pp′,hh′ = Vph(q) leads to ordinary RPA.
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Pair excitations for Fermions
The essence of the theory — Thouless’ book and beyond

δu(2)
ph,p′h′(t) = 0, F = 1, weakly interacting Hamiltonian:

(

eph − ~ω + V (A)
ph′,hp′ V (B)

pp′,hh′

V (B)
hh,pp′ eph + ~ω + V (A)

hp′,ph′

)(

δu(1)
ph

δu∗(1)
ph

)

=

(

U(ext)
ph

U∗(ext)
ph

)

Set V (A)
ph′,hp′ = V (B)

pp′,hh′ = Vph(q) leads to ordinary RPA.

F 6= 1: Replace bare interaction matrix elements by effective
screened matrix elements: Makes theory applicable for strongly
interacting systems. Omitting exchanges leads to “correlated”
RPA.
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Pair excitations for Fermions
The essence of the theory — Thouless’ book and beyond

δu(2)
ph,p′h′(t) = 0, F = 1, weakly interacting Hamiltonian:

(

eph − ~ω + V (A)
ph′,hp′ V (B)

pp′,hh′

V (B)
hh,pp′ eph + ~ω + V (A)

hp′,ph′

)(

δu(1)
ph

δu∗(1)
ph

)

=

(

U(ext)
ph

U∗(ext)
ph

)

Set V (A)
ph′,hp′ = V (B)

pp′,hh′ = Vph(q) leads to ordinary RPA.

F 6= 1: Replace bare interaction matrix elements by effective
screened matrix elements: Makes theory applicable for strongly
interacting systems. Omitting exchanges leads to “correlated”
RPA.

Keep δu(2)
ph,p′h′(t): Makes all matrix elements energy dependent,

does not change the single particle spectrum.

Fermion Dynamics 3He in 2D – the key example



Pair excitations for Fermions
The essence of the theory — Thouless’ book and beyond

δu(2)
ph,p′h′(t) = 0, F = 1, weakly interacting Hamiltonian:

(

eph − ~ω + V (A)
ph′,hp′ V (B)

pp′,hh′

V (B)
hh,pp′ eph + ~ω + V (A)

hp′,ph′

)(

δu(1)
ph

δu∗(1)
ph

)

=

(

U(ext)
ph

U∗(ext)
ph

)

Set V (A)
ph′,hp′ = V (B)

pp′,hh′ = Vph(q) leads to ordinary RPA.

F 6= 1: Replace bare interaction matrix elements by effective
screened matrix elements: Makes theory applicable for strongly
interacting systems. Omitting exchanges leads to “correlated”
RPA.

Keep δu(2)
ph,p′h′(t): Makes all matrix elements energy dependent,

does not change the single particle spectrum.

Knowing how to do triplets was a big help
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Pair excitations for Fermions
Results for 2D 3He

Theory ILL/CNRS experiment
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Pair fluctuations move the zero sound mode to the right energy
without need to shift the spectrum
two-particle-two-hole continuum softens single-particle
continuum
We do not claim that proper self-energy inclusions are
unimportant;
Further work is needed to make the connection between G(0)W
and CBF more transparent;
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Summary

Much technical progress with multiparticle fluctuations

Two examples where microscopic many-body theory explained
data

Simplistic paradigms (“effective mass” describe the physics of 2D
3He (and, hence, most likely of other Fermi systems) incorrectly.

Many-Body physics can be quantitative without undue parameter
fitting;

Quantitative microscopic many-body theory can be simple, but
sometimes “Mother Nature” wants it complicated;

Summary
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