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Schrödinger equations in strong magnetic fields2

!Nuclear magnetic resonance (NMR) properties

!Quantum dots in strong magnetic fields

!Quantum Hall effects

!Aharanov Bohm effects

!Graphene
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Action of evolution operator T(f) = e
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Assume we’re lucky:  Use           ’s as a basis:

Find lowest n eigenvalues of (T + V )ψi(r) = Eiψi(r)

ψi(r)
ψ(r) = c1ψ1(r) + c2ψ2(r) + · · · + cnψn(r)
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Calculate  Action of evolution operator

e−ε(T+V )ψ(r) = e−
1
2 εV e−εT e−

1
2 εV ψ(r)

ψ(r)← e−
1
2 εV (r) ψ(r)

ψ(k)← F [ψ(r)]

ψ(k)← e−εT (k) ψ(k)

ψ(r)← F−1 [ψ(k)]

(1) Multiply with potential

(2) Fourier transform

(3) Multiply with kinetic energy

(4) Fourier transform back

ψ(r)← e−
1
2 εV (r) ψ(r)(5) Multiply with potential

Effort:

3 vector-vector multiplications

2 3D Fast Fourier Transforms

3N3

2N3 lnN3

is stored on N3 grid points:ψi(r)Assume
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Large !:

Small !:

Fast Convergence

Slow Convergence

Large error

Small error

!Higher order factorizations?

e−ε(T+V ) = e−
1
2 εV e−εT e−

1
2 εV +O(ε3)

Accuracy of states:  proportional to total evolution time

τ = k ε
number of iterations



Bad news first: 

There is no factorization of the product form

T (ε) = e−ε(T+V ) =
M∏

i=1

e−ai εT e−bi εV +O(εN )

with entirely positive coefficients ai, bi

Positive coefficients required:

!Negative coefficients  = backwards diffusion in time

!Result: numerically unstable algorithms

“No-go” theorem (Suzuki, Chin):

(M. Suzuki, J. Math. Phys. 32 (1991) 319)



Way out  #1: Additional double commutator

Factorization 4A (Suzuki, Chin, Forbert):

T4A(ε) = e−
1
6 εV e−

1
2 εT e−

2
3 εeV e−

1
2 εT e−

1
6 εV +O(ε5)

Ṽ = V +
ε2

48
[V̂ , [T̂ , V̂ ]] = V (r) +

!2ε2

48m
|∇V (r)|2

!Additional correction term is local in real space!

!Effort: ~!2 x second order

!Improves convergence by a factor ~10 (compared to 
second order splitting)

(M. Suzuki, Phys. Lett. A201 (1995) 425)



Way out #2: Multi-product splitting

Factorize into sum of products:

e−ε(T+V ) =
∑

k

ck

∏

i

e−ak,iεT e−bk,iεV

!No-go theorem:  Single products can be at mostO(ε2)

e−ε(T+V ) =
n∑

k=1

ckT k
2

( ε

k

)
+O(ε2n+1)

ci =
n∏

j=1(!=i)

k2
i

k2
i − k2

j
with coefficients

Multi-product splitting (Chin ’09):

Effort:
1
2
n(n− 1) for O(ε2n)

(S.A. Chin, arXiv math.NA.0809.0914v1)
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2nd: < 10-3

6th:  2 10-1

12th:  2 !

~ 2000

Harmonic Oscillator



C60 model, 120th state

(S.A. Chin et al, Chem. Phys. Lett. , in press, 
DOI 10.1016/j.cplett.2009.01.068)



IRLM (Arpack)

(S.A. Chin et al, Chem. Phys. Lett. , in press, 
DOI 10.1016/j.cplett.2009.01.068)



Schrödinger equations in strong magnetic fields2
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B(r) = ∇×A(r)
Magnetic field is described by vector potential

!Enters Schrödinger equation through minimal substitution:

p→ Π = p + eA

!Kinetic energy operator becomes:

T =
1

2m
[−i!∇+ eA(r)]2 =

1
2m

[
Π2

x + Π2
y + Π2

z

]

Common gauge choices for homogeneous fields

Symmetric gauge:

Landau gauge: A(r) = B(x− x0)ey

A(r) =
B

2
(−(y − y0)ex + (x− x0)ey)
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Task: Factorize e−εT = e−
ε

2m (Π2
x+Π2

y+Π2
z)

!T is no longer diagonal in Fourier space

!Free electrons in uniform field Harmonic oscillator

Exact for arbitrarily large fields!

ξ = ε!eB/m

!Feynman: density matrix of the HO can be factorized exactly.

!Chin: kinetic energy propagator can be factorized exactly:
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in Landau gauge: A(r) = Bxey

e−εcy(py+Bx)2 e−εcxp2
x e−εcy(py+Bx)2 e−εczp2

z ψ(x, y, z)

Action of e−εT



in Landau gauge: A(r) = Bxey

e−εcy(py+Bx)2 e−εcxp2
x e−εcy(py+Bx)2 e−εczp2

z ψ(x, y, z)

(1)  2D FFT for each x → ψ(x, ky, kz) N N2 lnN2

Action of e−εT



in Landau gauge: A(r) = Bxey

e−εcy(py+Bx)2 e−εcxp2
x e−εcy(py+Bx)2 e−εczp2

z ψ(x, y, z)

(1)  2D FFT for each x

(2)  1D FFT for each ky,kz

→ ψ(x, ky, kz)

→ ψ(kx, ky, kz)

N N2 lnN2

N2 N lnN

Action of e−εT



in Landau gauge: A(r) = Bxey

e−εcy(py+Bx)2 e−εcxp2
x e−εcy(py+Bx)2 e−εczp2

z ψ(x, y, z)

(1)  2D FFT for each x

(2)  1D FFT for each ky,kz

(3)  1D FFT-1 for each ky,kz

→ ψ(x, ky, kz)

→ ψ(kx, ky, kz)

→ ψ(x, ky, kz)

N N2 lnN2

N2 N lnN

N2 N lnN

Action of e−εT



in Landau gauge: A(r) = Bxey
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in Landau gauge: A(r) = Bxey

e−εcy(py+Bx)2 e−εcxp2
x e−εcy(py+Bx)2 e−εczp2

z ψ(x, y, z)

(1)  2D FFT for each x

(2)  1D FFT for each ky,kz

(3)  1D FFT-1 for each ky,kz

(4)  2D FFT-1 for each x

→ ψ(x, ky, kz)

→ ψ(kx, ky, kz)

→ ψ(x, ky, kz)

→ ψ(x, y, z)

N N2 lnN2

N N2 lnN2

N2 N lnN

N2 N lnN

2 N3 lnN3Overall effort:

Effort identical to field free case!

Action of e−εT

= Time needed for 2  3D FFT’s



Let’s do something useful...

!Calculate current density of Benzene

j(r) =
e

2m

∑

j

[
ψ∗

j Πψj + ψj (Πψj)
∗]



Keith, Bader, Chem. Phys. Lett. 210, 223 (1993)



Keith, Bader, Chem. Phys. Lett. 210, 223 (1993)
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“Gauge origin problem”

Problem well known in quantum chemistry
(since early 1970’s)

See, e.g. , Helgaker, Jazunsky, Ruud, Chem. Rev.  99 (1999)

“Within a finite linear variational subspace,  gauge origin 
invariance can never be obtained exactly, only approximately 

for small displacements of the gauge origin.”

Physics of course is gauge invariant, but correct symmetry 
gets destroyed by truncating the basis

See Siu Chin’s talk: Understand the physics to make 
good algorithms
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Observables should be independent of gauge ...

Gauge transformation: A(r)→ A′(r) = A(r) +∇χ(r)

Should not change the physics: ψ(r)→ ψ′(r) = eieχ(r)/!ψ(r)

Introduce “Gauge transport function” (J. Schwinger)

Chain rule, product rule

fi(r) =
∫ xi

Ai(r)dxi

Then: Covariant derivative

π2
i =

[
−i! ∂

∂xi
+ eAi(r)

]2

= e−iefi(r)/! ∂2

∂x2
i

e−iefi(r)/!



A(r)→ A′(r) = A(r) +∇χ(r)

fj(r)→ f ′
j(r) = fj(r) + χ(r)fi(r) =

∫ xi

Ai(r)dxi

Gauge transformation:



A(r)→ A′(r) = A(r) +∇χ(r)

fj(r)→ f ′
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Key relation:

Numerical calculations:  approximate LHS on finite basis 



Equality is never fulfilled exactly on a finite-size basis set

!Finite differences:  Chain- and product-rules not exact

!Equality only fulfilled in the limit

[
−i! ∂

∂xi
+ eAi(r)

]2

= e−iefi(r)/! ∂2

∂x2
i

e−iefi(r)/!

Key relation:

h→ 0

Numerical calculations:  approximate LHS on finite basis 



Equality is never fulfilled exactly on a finite-size basis set

!Finite differences:  Chain- and product-rules not exact

!Equality only fulfilled in the limit

[
−i! ∂

∂xi
+ eAi(r)

]2

= e−iefi(r)/! ∂2

∂x2
i

e−iefi(r)/!

ψ′(r) = e−i e
! χ(r)ψ(r)

Result: phase factor not reproduced exactly
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Numerical calculations:  approximate LHS on finite basis 

ψ′(r) = Γ(r)e−i e
! χ(r) ψ(r)



Equality is never fulfilled exactly on a finite-size basis set

!Finite differences:  Chain- and product-rules not exact

!Equality only fulfilled in the limit

[
−i! ∂

∂xi
+ eAi(r)

]2

= e−iefi(r)/! ∂2

∂x2
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ψ′(r) = e−i e
! χ(r)ψ(r)

Result: phase factor not reproduced exactly

Key relation:

h→ 0

Numerical calculations:  approximate LHS on finite basis 

!Position-dependent error in the wave function!

ψ′(r) = Γ(r)e−i e
! χ(r) ψ(r)



!All discretizations are gauge covariance in the limit h→ 0

!Need coarse discretization/small basis

!3D: effort goes ~N3 

(S. Janecek, E. Krotscheck, Phys. Rev. B 77 (2008) 245115)
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[
−i! ∂

∂xi
+ eAi(r)

]2

= e−iefi(r)/! ∂2

∂x2
i

e−iefi(r)/!

!RHS yields gauge covariant operator for any discrete 
approximation of the Laplacian!

!All discretizations are gauge covariance in the limit h→ 0

!Need coarse discretization/small basis

!3D: effort goes ~N3 

Cure:

(S. Janecek, E. Krotscheck, Phys. Rev. B 77 (2008) 245115)



Laplacian is diagonal in Fourier space (in any discretization)

!2 d2

dx2
ψ(x, y, z) =

∑

kx

ψ̃(kx, y, z)tn(kx)eikxxj

Expand wave function

ei e
! fy(r)ψ(x, y, z) =

∑

ky

ψ̃(x, ky, z)eiy(ky+ e
! Ay(x,z))

Π2
yψ(x, yj , z) = e−i e

! fy(x,yj ,z)

[
−!2 d2

dy2
e+i e

! fyψ

]

n

(x, yj , z) =

=
∑

ky

ψ̃(x, ky, z)tn
(
ky +

e

!Ay(x, z)
)

eikyyj
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∫
d3r′ r′ − r
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∫
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∂Mi
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Applications

!Current densities of Molecules

!Induced current in turn induces magnetic field (Biot-Savart)

!Local field modifications due to induced field can be 
measured very accurately in NMR experiments.

Bind(r) =
µ0

4π

∫
d3r′ r′ − r

|r′ − r|3 × j(r′), m =
1
2

∫
r× j(r) d3r

σij(R) =
∂Bind

i (R)
∂Bext

j

. ... NMR shift

Susceptibility χij = µ0
∂Mi

∂Bext
j
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Field: 1Tesla

Gauge covariant 
calculation
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!3D Fock Darwin Model:  Harmonic oscillator in strong, 
homogeneous magnetic field

!Analytically solvable

!Model for Quantum dots in strong fields

Strong magnetic fields



963 grid points

~60 states



Susceptibilities & NMR shifts of some molecules

Addidional approximations:

!LDA (local density approximation)

!Pseudopotentials (not very good for NMR properties)











Conclusions

!Diffusion method allows for elegant inclusion of 
arbitrarily strong magnetic fields

!Some care needed for correct gauge covariant 
implementation

2

!Multi-product expansions: fast solvers for 
Schrödinger equations

!Factor ~10 with respect to Implicitly Restarted 
Lanczos Method (IRLM)

1



Conclusions

!Diffusion method allows for elegant inclusion of 
arbitrarily strong magnetic fields

!Some care needed for correct gauge covariant 
implementation

2

Thank you for your attention!

!Multi-product expansions: fast solvers for 
Schrödinger equations

!Factor ~10 with respect to Implicitly Restarted 
Lanczos Method (IRLM)

1



Happy Birthday, Siu !


