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Outline of the Talk

Outline of the talk

0) Time Decomposition methods: Magnus Expansion -
Suzuki’s Expansion

1) Multi product Expansion: Theory and Analysis
2) Comparisons
3) Numerical Results
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Timedependent Decomposition Methods

Introduction

Timedependent decomposition methods are important
algorithms to solve Hamiltonian problems (e.g., Schrédinger
equations, harmonic oscillators, etc.) so hyperbolic problems.
Here Magnus expansion has been widely studied, see some of
the recent literature, e.g.,

The Magnus expansion and some of its applications, see
[Blanes, Casas, Oteo, Ros 2008] ;

Convergence of Magnus series, see [Moan, Niesen 2008] ;

Commutator free Magnus expansion, see [Blanes, Moan
2006] ;
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Timedependent Decomposition Methods

Introduction

Some delicate computational work is to do in the Magnus
expansion:

m time-integrals
m nested commutators to obtain higher order methods
Derivation of higher orders beyond sixth-order are consuming.
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Timedependent Decomposition Methods

Introduction

An alternative algorithm is a multiproduct expansion with
Suzuki’'s method to provide a simpler ways of a higher order
method for time-dependent problems.

Suzuki’s method has been studied in different applications, see
some of the recent literature, e.g.,

General decomposition theory of ordered exponentials,
see [Suzuki 1993] ;

Gradient symplectic algorithms for solving the Schrédinger
equation, see [Chin, Chen 2002] ;

Multiproduct splitting and Runge-Kutta-Nystrém
integrators, see [Chin 2008] ;
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Timedependent Decomposition Methods

Introduction

We concentrate on solving linear evolution equations, such as
the time-dependent Schrdédinger equation,

ot u= A(t)u, u(0) = up, (1)

where A can be an unbounded and time-dependent operator.
For solving Hamiltonian problems, it is often the case that
A(t) = T + V(t), where only the potential operator V(t) is
time-dependent and T is the linear operator (e.g., spatial
dependent: diffusion operator).
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Magnus expansion and Suzuki’s method

Exponential Splitting based on Magnus Integrator

The Magnus integrator was introduced as a tool to solve
non-autonomous linear differential equations for linear
operators of the form

ay
o =AY, (@)

with solution

Y(t) = exp(Q2(1)) Y(0) - @)
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Magnus expansion and Suzuki’s method

This can be expressed as:

Y(t)=T (exp( /0 "As) ds> Y(0) | (4)

where the time-ordering operator 7, see [Dyson 1976].
The Magnus expansion is defined as:

Q) = (1), (5)
n=1

where the first few terms are:

t 1t t
Q1(t):/0 dty A Qg(t):z/o dty [ el r. 4.

t ty to
Q3(t):;/0 dt1/0 dtg/o dts([A1, [Aa, As] + [[A1, As], As]),
(6)
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Magnus expansion and Suzuki’s method

For practical reasons, it is more useful to define the nth order
Magnus operator

Q) = Q(t) + o(t™) (7)

such that
Y(t) = exp[QU(1)] Y(0) + O(t"). (8)

Thus the second-order Magnus operator is

Ql?l(¢ / dt Alty) = tA (; ) +O(f) (9)
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Magnus expansion and Suzuki’s method

Example: A fourth-order Magnus operator [Blanes 2008] is
given as

(1) = t(A1 + Az) — c3t?[Ar, Ag (10)
where Ay = A(cyt), A2 = A(cot) and
v I

6

5 e

(11)

N =
r\)\

Cl =

Jirgen Geiser, Humboldt Universitat zu Berlin, Germany "High-order actions and their applications” to honor our friend and



Magnus expansion and Suzuki’s method

To apply Magnus integrators one have to evaluate nested
commutators, which makes Magnus integrators beyond the
fourth-order rather complex.

Example:
Alty=T+ V(1), (12)
one has
eQIZI(t) — ClT+V(t/2)]
e%tTetV(t/Z)e%tT+ O(t3) (13)
and
() _ (Cat(Va= V1) oH(T+5(Vi+V2)) g —Cst(Vo— V1) (14)
where
Vi = V(C1 t), Vo = V(Cgt). (15)
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Magnus expansion and Suzuki’s method

Remark

1.) General operator case: Magnus expansion generates more
terms in the exponential, more complex splittings are
necessary.

2.) Example: Central exponential in (14) must be further splitted
to fourth-order method, to maintain the fourth-order character of
the overall algorithm (e.g., fourth order integration formula)
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Magnus expansion and Suzuki’s method

Suzuki’s time-ordered exponential and multi-product
splitting
Instead of the Magnus series (5) expanding the time-dependent
problems, we directly implement the time-ordered exponential
as suggested by Suzuki [Suzuki 1993]:

t+At
Y(t+ At) :T<exp/ A(s)ds) (). (16)
t
aside from the conventional expansion
t+At
T(exp / A(s)ds) (17)
t

t+At t+At s
=1+ / A(s1)dsy —I-/ ds; / dspA(s1)A(S2) + -+,
t t t
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Magnus expansion and Suzuki’s method

Time-ordered exponential can also interpreted as (use Trotter
product formula)

n—oo

T(exp /HNA(S)ds) = lim T(e% Sl At ), (18)
t

n

— fim eBAAY | (BLA(+2Y) ALAEAL)

n—oo

Further Suzuki introduces the forward time derivative operator

«—

_9
ot

such that for any two time-dependent functions F(t) and G(t),

F(t)e2PG(t) = F(t + ADG(t). (20)

D (19)
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Magnus expansion and Suzuki’s method

Trotter’s formula then gives

n
exp[At(A(t) + D)] = Lm@(ﬁme%) | -
= lim eSATAD L HAH N SALHS)
n—oo

where property (20) has been applied repeatedly and
accumulatively. Comparing (19) with (22) yields Suzuki’s
decomposition of the time-ordered exponential:

T(exp /t HAtA(s)ds) — exp[At(A(t) + D). (22)

Thus time-ordering can be achieve by splitting an additional
operator D.
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Magnus expansion and Suzuki’s method

ldea: Transforms of any existing splitting algorithms into
integrators of explicit time-dependent problems.
For example, we have the following second order splittings

To(At) = o3 DDA JFAD _ (AA(H+5AL) (23)
The choice of symmetric products is important, because one
then has only odd powers of At
To(AL) = eAt(A(t)+D)+At3E3+At5E5+--~ (24)
Every occurrence of the operator ¢4 from right to left,
updates the current time t to t + d;At. If tis the time at the start

of the algorithm, then after the first occurrence of e%A’D, time is
t+ LAt After the second 22, time is t + At. For example,

To(A)To(AL) = DA+ AL AW+ AL (25)
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Magnus expansion and Suzuki’s method

Problem:
Higher order factorization of (22) into a single product form

exp[At(A(t) + D)] = NedAANHAD (26)

will yield higher order algorithms, but at the cost of
exponentially growing number of evaluations of e#4%A,
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Magnus expansion and Suzuki’s method

Benefits of the MPE algorithm:

Higher order algorithms can be built from the multi-product
expansion, see [Chin 2008] of (22), with only quadratically
growing number of exponentials at high orders.

For example,

T = -y B0 + 57 () (27)

1 16 At 81 At
o) = a0 - 1072 (5 )+ 07 (5) e
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Magnus expansion and Suzuki’s method

o 16 729, (At
B(AD = ~ 55 (M) + 35 T2 <2>_28072 <3>

1024 _, (At
315 ( 4 ) (29)
1 64, (At\ 6561 5 (Al
Tio(Al) = gazp 2(AN) ~ 52572 ( 2 ) * 24807 <3>
16384, , (At\ 390625, . (At
~ 2835 2 (4) T 72576 2 (5) - (89)
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Magnus expansion and Suzuki’s method

Derivation of the closed form: For a given set of n distinct whole
numbers {k1, k2, ...kn}, one can form a 2n-order approximation
of e21(A+D) yig

n

(At

AUAD) _ 3 g7 (k) T en (P Banyr). (31)
i=1 !

with closed form solutions

n k-2
— i
o= 1l e (32)
=1 ]
and error coefficient,

L
eont = (—1)"" H 2 (33)

=1 i
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Magnus expansion and Suzuki’s method

The expansion coefficients c¢; are determined by a specially

simple Vandermonde equation:

1 1 1
k2 ky 2 ky 2
K ky* kgt

k1—2(n—1) k2—2(n—1) k3—2(n—1)
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Magnus expansion and Suzuki’s method

Since

K (At AP AP

1 1

Es+--- ,

(35)
the coefficients ¢; so determined by (34), guarantees that all
error terms in (24) and (35) when expanded from the
exponential, including cross-terms, vanish up to order 2n. That
is, the extrapolation acts correctly on the entire exponential and
not just on the exponent. The above explicit form corresponds
to the harmonic sequence {k1, ko, k3, ...} = {1,2,3,...}.
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Magnus expansion and Suzuki’s method

In the case of A(t) = T + V(t), the second order algorithm is
then

To(Al) = QAN AL _ (AT ALV(t+AL/2) GAIT O(AR). (36)

Proposition
An error estimates is given as:

EAT AV AT _ A(T+V)+APE+ACEs .. yith (37)
1
E, = _—[TTV] _ l[VTV]

Es = ——[T*V]+ —=[T2VTV] + —[VT3V] + —[VTVTV],

5760 480 360 1 20

where [T2V] = [T,[T, V]l and [T*V] = [T, [T, [T, [T, V]]]] etc.,
denote nested commutators, where [VVTV]| = 0.
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Magnus expansion and Suzuki’s method

The estimation of the error terms are given as:
1Bl =1~ g [TTVI— VTV (38)
s Tl g 12

1 1
g TEIVIE+ 5TV,

||Es|| \|5760[TTTTV] + —[TTVTV] (39)
360[VTTTV]+ 120[VTVTV]H
4 3 2 2 3
< e ITIVI+ s I TV + a5 I T2V
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Magnus expansion and Suzuki’s method

General:

Magnus expansion and the exponential-splitting scheme
require exponentially growing number of operators at higher
orders.

Suzuki’s rule of incorporating time-ordering operators reduce
this fundamental requirement of exponentially growing.
Currently, only MPE, which systematically removes each
odd-order error term by extrapolation, limits the growth of
operators quadratically.
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Error analysis of the Multi-product expansion

Error analysis of the Multi-product expansion

The convergence analysis is based on the restriction to
exponential splitting, our proof of convergence based on the
general framework of [Ostermann, Hansen 2008].

We assume small h, the second-order decomposition is
bounded as follow:

1 Z2(h)]| =] exp( hD) exp(hA(t)) exlO(1 hD)|| < exp(cwh),
(40)
with ¢ only depends on the coefficients of the method and w is
a constant. We can then derive the following convergence
results for the multi-product expansion.
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Error analysis of the Multi-product expansion

Theorem
For the numerical solution of (2), we consider our MPE method

(31) of order 2n + 1 and we apply Assumption (40), then we
have:

1 (8™ — exp(mh(A(t) + D)) ol < CO(F*™"),mh < T, (41)

where S = 1, c,-Tzkf(kﬁl_) and C is to be chosen uniformly on
bounded time intervals and independent of m and h for
sufficient small h.
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Error analysis of the Multi-product expansion

Proof.
We apply the telescopic identity and obtain:

(S™ — exp(mh(A(t) + D))) up = (42)
m—1

> 87 1(S — exp(h(A(t) + D))) exp(vh(A(t) + D))uo
v=0

where S =37 c,-7'2kf(kﬁi)

We apply assumption (40) and yield to the stability:

I Z C,Tk y < exp(cwh). (43)

Jirgen Geiser, Humboldt Universitat zu Berlin, Germany "High-order actions and their applications” to honor our friend and



Error analysis of the Multi-product expansion

We assume that the consistency is bound:

I ;c@kf(,’;) exp(h(A+ D))|| < O(FP™')  (44)

is valid, we have the following error bound:
|| (S™ — exp(mh(A(t) + D))) up|| < CO(PP™1),mh < T, (45)

The consistency is derived in the following theorem.
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Error analysis of the Multi-product expansion

Theorem
For the numerical solution of (2), we have the following
consistency:

I ,21: Cszk’(Z) —exp(h(A+ D))|| < O(R"1).  (46)
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Error analysis of the Multi-product expansion

Proof.
Based on the derivation of the coefficients via the
Vandermonde equation the product is bounded and we have:

! h
; KT (3) (47)

n
=Y o (exp((A + B)h) — (k2H3Es + k—*HPEs + .. .)) ,
k=1

n n
= (GXP((A +B)h) — > kR E2i+1) ,
i

k=1
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Error analysis of the Multi-product expansion

n n
= [exp((A+B)h) = > cx > Kk ZH By |,
k=

= O(K?™M). (48)
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Error analysis of the Multi-product expansion

Lemma
We assume ||A(t)|| to be bounded in the interval t € (0, T).
Then T, is non-singular for sufficient small h.

Proof.
We use our assumption |A(t)| is to be bounded in the interval
O<t<T.
So we can find ||A(t)|]| < CforO < t < T.
Therefore T is always non-singular for sufficiently small h.
L]
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Error analysis of the Multi-product expansion

Theorem

We assume T, is non-singular, see previous Lemma. If T is
non-singular, then the entire MPE is non-singular and we have
a uniform convergence.

Proof.
Since
To = exp(hA(t + h/2)), (49)

for sufficient small h << 1, we have
To =1+ hA(Y). (50)

Thus if ||A(t)|| is bounded in 0 < t < T, then T is nonsingular
and bounded, and we have uniform convergence in [0, T]. see
[Yoshida 1980].

Jirgen Geiser, Humboldt Universitat zu Berlin, Germany "High-order actions and their applications” to honor our friend and



Numerical Examples

Numerical Experiments

Example 1: The non-singular matrix case

To assess the convergence of the Multi-product expansion with
that of the Magnus series, consider the well known example
[moan 2008] of

an=(5 1 ). (51)

The exact solution to (2) with Y(0) = /is
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Numerical Examples

with
f(t) = ;e—f(ef“ —1-31) (53)
G S SR t’
~ 27876080 220
318 t9 1310 1311

*+20320 T 6720 " 403200 " 178200 \°Y
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Numerical Examples

For the Magnus expansion, one has the series

_ (2 g
an- (5 %), (55)
with, up to the 10th order,
_lp 1s. 8,5 9 o B
9 = -z 5" ~ 720" *aas00’ T
t(e3 — 1 — 3t)
3(e3 —1) (56)
Exponentiating (55) yields (52) with
1 1 1 3 27
gt 3t T 1, Ta 5 7.
) = tee 1)<6 12! 780" " Ti20' T aas00’ T )
1 1
N —tr 3t S )
te™'(e 1)<9t 3(e3f—1)> (57
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Numerical Examples

The multi-product expansion suffers no such drawbacks.
From (23), by setting At = tand t = 0, we have

T>(t) = exp [t( g _%t )] = ( e;t e’?gt) > (58)

b(t) = %te_t(est —1). (59)

with
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Numerical Examples

This is identical to first term of the Magnus series (57) and is an
entire function of t. Since higher order MPE uses only powers
of 75, higher order MPE approximations are also entire
functions of t. Thus up to the 10th order, one finds

3t 3t/2
L tfe 5 2e
fa(t) = te < 18 + 9 ) (60)

[ 11e31 - 109 9 8
fs(t) = te t (360 + E(GZT + et) — 631/2> (61)
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Numerical Examples

15131 — 2369 256
f _ —t 9t/4 | . 3t/4
5(t) te ( 2560 + 945(6 +e27)  (62)

81 2t | 104est/2>

~280(@ )+ 375

15619¢3! — 347261 78125
f _ - 12t/5 9t/5
o) =t ( 1088640 217728  T°

4096 729
6t/5 | 3t/5\ ot/4 | 3t/4
+e°/® 4+ e°l/?) 78505(6 +e )+4480(e +eh)
8505 ' (63)
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Numerical Examples

When expanded, the above yields

2
2t 5P
t2 t4 t5 t6 t7
Bf) = = bbb e

2 8 60 80 384
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Numerical Examples

fs(t) — ﬁ+ﬁ+ﬁ+ﬁ+i+£
2 "8 60 ' 80 ' 420 ' 40320
130712
8601600
fio(t) = f+ﬁ+f+ﬁ+ v + 18 + e
10 2 "8 "60 ' 80 ' 420 ' 40320 ' 6720
1310 1309911

403200 | 232243200 T

(65)

+

(66)

and agree with the exact solution to the claimed order.
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Numerical Examples

log(f(x))

4

Figure: The black line is the exact result (53). The blue lines are the
Magnus fourth to tenth order results (57), which diverge from the
exact result beyond t > 2. The red lines are the multi-product
expansions. The purple line is their common second order result.
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Numerical Examples

Results:
The Magnus series (56) and (57) only converge for |{| < %w due

to the pole at t = 7.
The MPE series convergences uniform for all t.

order actions and their applications” to honor our friend anc
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Numerical Examples

Experiment 2: The radial Schédinger equation
We consider the radial Schrédinger equation

2
‘;r‘; — 1(r, E)u(r) (67)
where
f(r, E) = 2V(r) — 2E + /(/r“) , (68)

By relabeling r — t and u(r) — q(t), (67) can be viewed as
harmonic oscillator with a time dependent spring constant

k(t,E) = —f(t, E) (69)
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Numerical Examples

and Hamiltonian
1, 1 2
H= 2p + 2k(t, E)qg-. (70)
Thus any eigenfunction of (67) is an exact time-dependent

solution of (70). For example, the ground state of the hydrogen
atomwith /=0, E=—-1/2 and

yields the exact solution

q(t) = texp(—t) (72)

with initial values g(0) = 0 and p(0) = 1.
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Numerical Examples

Denoting

o-()

the time-dependent oscillator (70) now corresponds to

A(t)=<,«(°t) 8>=<8 <1)>+<f(0t) 8)

=T+ V(1), (74)

with
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Numerical Examples

In this case, the second-order midpoint algorithm is

To(ht) = 0ahT ghV(t+h/2) ;3hT
1+ 1RPHt+1h)  h+ 1Rt + 1h) (76)
hf(t+ $h) 1+ 1RPf(t+ 1h),

and for g(0) = 0 and p(0) =1, (settingt =0 and h = t),
correctly gives the second order result,

L P R R I
B(t) = t+ P50 =t = £+ 4 (77)
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Numerical Examples

Higher order multi-product expansions, using (76), then yield

78 4 P
o _f2 s _
Q@) = -+ g -5 +5s
2118 314 17t°
_ _ 42 _
gs(t) =0+ 50 ~ 225 V600 ©
0 = t- 24 3223313 5101t N 313945 .
% - 66150 33075 @ 88200
881598  143177t* 91753t°

1786050 ~ 893025 | 2381400 |

qo(t) = t—t+ (78)
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Numerical Examples

20 30 40 60 |80 100

() or Psi(r)

-0.1

Figure: The uniform convergence of the multi-product expansion in
solving for the hydrogen ground state wave function. (Black line:
exact ground state wave function, The numbers indicates the order of
the MPE. Blue lines: various fourth-order algorithms.
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Numerical Examples

Remarks:

While wel-known higher order splitting method, as FR
(Forest-Ruth 1990, 3 force-evaluations), M (McLachlan 1995, 4
force-evaluations), BM (Blanes-Moan 2002, 6
force-evaluations), Mag4 (Magnus integrator, see below, ~ 2.5
force-evaluations) leaks with the accuracy, MPE series up to
the 100th order, matches against the exact solution and 4B
[Chin 2006] (a forward symplectic algorithm with only ~ 2
evaluations).
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Numerical Examples

2
Maga
b
Pl s T U |
48 % L,
-6
%w\;\\xi 3
- N
g N
w
g 0 \ BM
g \
S
12 .\\5\
-14 vg
1
16 1
3 35 4 45 5

Log10(N)

Figure: A precision-effort comparison of various fourth-order
algorithms with that of MPE for computing the ground state of a
spiked harmonic oscillator. N is the number of force-evaluations.
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Conclusions

Conclusions

We present an alternative method: MPE of operators together
with Suzuki’s rule of incorporating the time-ordered exponential.
We have compared the MPE method with that of the Magnus
expansion and found that in cases where the Magnus
expansion has a finite radius of convergence, the MPE
converges uniformly.

Moreover, MPE requires far less operators at higher orders
than either the Magnus series or conventional
exponential-splitting. In the future we will focus on applying
MPE method for solving nonlinear differential equations.
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