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Outline of the talk

0) Time Decomposition methods: Magnus Expansion -
Suzuki’s Expansion

1) Multi product Expansion: Theory and Analysis
2) Comparisons
3) Numerical Results
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Introduction

Timedependent decomposition methods are important
algorithms to solve Hamiltonian problems (e.g., Schrödinger
equations, harmonic oscillators, etc.) so hyperbolic problems.
Here Magnus expansion has been widely studied, see some of
the recent literature, e.g.,

1 The Magnus expansion and some of its applications, see
[Blanes, Casas, Oteo, Ros 2008] ;

2 Convergence of Magnus series, see [Moan, Niesen 2008] ;
3 Commutator free Magnus expansion, see [Blanes, Moan

2006] ;
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Introduction

Some delicate computational work is to do in the Magnus
expansion:

time-integrals
nested commutators to obtain higher order methods

Derivation of higher orders beyond sixth-order are consuming.
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Introduction

An alternative algorithm is a multiproduct expansion with
Suzuki’s method to provide a simpler ways of a higher order
method for time-dependent problems.
Suzuki’s method has been studied in different applications, see
some of the recent literature, e.g.,

1 General decomposition theory of ordered exponentials,
see [Suzuki 1993] ;

2 Gradient symplectic algorithms for solving the Schrödinger
equation, see [Chin, Chen 2002] ;

3 Multiproduct splitting and Runge-Kutta-Nyström
integrators, see [Chin 2008] ;
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Introduction

We concentrate on solving linear evolution equations, such as
the time-dependent Schrödinger equation,

∂t u = A(t)u, u(0) = u0, (1)

where A can be an unbounded and time-dependent operator.
For solving Hamiltonian problems, it is often the case that
A(t) = T + V (t), where only the potential operator V (t) is
time-dependent and T is the linear operator (e.g., spatial
dependent: diffusion operator).
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Exponential Splitting based on Magnus Integrator

The Magnus integrator was introduced as a tool to solve
non-autonomous linear differential equations for linear
operators of the form

dY
dt

= A(t)Y (t) , (2)

with solution

Y (t) = exp(Ω(t))Y (0) . (3)
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This can be expressed as:

Y (t) = T
(

exp(

∫ t

0
A(s) ds

)
Y (0) , (4)

where the time-ordering operator T , see [Dyson 1976].
The Magnus expansion is defined as:

Ω(t) =
∞∑

n=1

Ωn(t) , (5)

where the first few terms are:

Ω1(t) =

∫ t

0
dt1A1, Ω2(t) =

1
2

∫ t

0
dt1
∫ t1

0
dt2[A1, A2],

Ω3(t) =
1
6

∫ t

0
dt1
∫ t1

0
dt2
∫ t2

0
dt3([A1, [A2, A3] + [[A1, A2], A3]),

· · · · · · etc. (6)

where An = A(tn).
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For practical reasons, it is more useful to define the nth order
Magnus operator

Ω[n](t) = Ω(t) + O(tn+1) (7)

such that
Y (t) = exp

[
Ω[n](t)

]
Y (0) + O(tn+1). (8)

Thus the second-order Magnus operator is

Ω[2](t) =

∫ t

0
dt1A(t1) = tA

(
1
2

t
)

+ O(t3) (9)
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Example: A fourth-order Magnus operator [Blanes 2008] is
given as

Ω[4](t) =
1
2

t(A1 + A2)− c3t2[A1, A2] (10)

where A1 = A(c1t), A2 = A(c2t) and

c1 =
1
2
−
√

3
6

, c2 =
1
2

+

√
3

6
, c3 =

√
3

12
. (11)
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To apply Magnus integrators one have to evaluate nested
commutators, which makes Magnus integrators beyond the
fourth-order rather complex.
Example:

A(t) = T + V (t), (12)

one has

eΩ[2](t) = et[T+V (t/2)]

= e
1
2 tT etV (t/2)e

1
2 tT + O(t3) (13)

and
eΩ[4](t) = ec3t(V2−V1)et(T+ 1

2 (V1+V2))e−c3t(V2−V1) (14)

where
V1 = V (c1t), V2 = V (c2t). (15)
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Remark
1.) General operator case: Magnus expansion generates more
terms in the exponential, more complex splittings are
necessary.
2.) Example: Central exponential in (14) must be further splitted
to fourth-order method, to maintain the fourth-order character of
the overall algorithm (e.g., fourth order integration formula)
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Suzuki’s time-ordered exponential and multi-product
splitting

Instead of the Magnus series (5) expanding the time-dependent
problems, we directly implement the time-ordered exponential
as suggested by Suzuki [Suzuki 1993]:

Y (t + ∆t) = T
(

exp
∫ t+∆t

t
A(s)ds

)
Y (t), (16)

aside from the conventional expansion

T
(

exp
∫ t+∆t

t
A(s)ds

)
(17)

= 1 +

∫ t+∆t

t
A(s1)ds1 +

∫ t+∆t

t
ds1

∫ s1

t
ds2A(s1)A(s2) + · · · ,
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Time-ordered exponential can also interpreted as (use Trotter
product formula)

T
(

exp
∫ t+∆t

t
A(s)ds

)
= lim

n→∞
T
(
e

∆t
n

Pn
i=1 A(t+i ∆t

n )
)
, (18)

= lim
n→∞

e
∆t
n A(t+∆t) · · · e

∆t
n A(t+ 2∆t

n )e
∆t
n A(t+∆t

n ).

Further Suzuki introduces the forward time derivative operator

D =

←
∂

∂t
(19)

such that for any two time-dependent functions F (t) and G(t),

F (t)e∆tDG(t) = F (t + ∆t)G(t). (20)

Jürgen Geiser, Humboldt Universität zu Berlin, Germany ”High-order actions and their applications” to honor our friend and collaborator Siu A. Chin Universitat Politecnica de Catalunya, Barcelona, Spain Lecture: Magnus Expansion and Suzuki’s Method



Outline of the Talk
Timedependent Decomposition Methods
Magnus expansion and Suzuki’s method

Error analysis of the Multi-product expansion
Numerical Examples

Conclusions

Trotter’s formula then gives

exp[∆t(A(t) + D)] = lim
n→∞

(
e

∆t
n A(t)e

∆t
n D
)n

, (21)

= lim
n→∞

e
∆t
n A(t+∆t) · · · e

∆t
n A(t+ 2∆t

n )e
∆t
n A(t+∆t

n ),

where property (20) has been applied repeatedly and
accumulatively. Comparing (19) with (22) yields Suzuki’s
decomposition of the time-ordered exponential:

T
(

exp
∫ t+∆t

t
A(s)ds

)
= exp[∆t(A(t) + D)]. (22)

Thus time-ordering can be achieve by splitting an additional
operator D.
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Idea: Transforms of any existing splitting algorithms into
integrators of explicit time-dependent problems.
For example, we have the following second order splittings

T2(∆t) = e
1
2 ∆tDe∆tA(t)e

1
2 ∆tD = e∆tA(t+ 1

2 ∆t). (23)

The choice of symmetric products is important, because one
then has only odd powers of ∆t

T2(∆t) = e∆t(A(t)+D)+∆t3E3+∆t5E5+··· (24)

Every occurrence of the operator edi∆tD, from right to left,
updates the current time t to t + di∆t . If t is the time at the start
of the algorithm, then after the first occurrence of e

1
2 ∆tD, time is

t + 1
2∆t . After the second e

1
2 ∆tD, time is t + ∆t . For example,

T2(∆t)T2(∆t) = e∆tA(t+ 3
2 ∆t)e∆tA(t+ 1

2 ∆t). (25)
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Problem:
Higher order factorization of (22) into a single product form

exp[∆t(A(t) + D)] = Πieai∆tA(t)edi∆tD (26)

will yield higher order algorithms, but at the cost of
exponentially growing number of evaluations of eai∆tA.
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Benefits of the MPE algorithm:
Higher order algorithms can be built from the multi-product
expansion, see [Chin 2008] of (22), with only quadratically
growing number of exponentials at high orders.
For example,

T4(∆t) = −1
3
T2(∆t) +

4
3
T 2

2

(
∆t
2

)
(27)

T6(∆t) =
1
24
T2(∆t)− 16

15
T 2

2

(
∆t
2

)
+

81
40
T 3

2

(
∆t
3

)
(28)
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T8(∆t) = − 1
360

T2(∆t) +
16
45
T 2

2

(
∆t
2

)
− 729

280
T 3

2

(
∆t
3

)
+

1024
315

T 4
2

(
∆t
4

)
(29)

T10(∆t) =
1

8640
T2(∆t)− 64

945
T 2

2

(
∆t
2

)
+

6561
4480

T 3
2

(
∆t
3

)
−16384

2835
T 4

2

(
∆t
4

)
+

390625
72576

T 5
2

(
∆t
5

)
.. (30)
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Derivation of the closed form: For a given set of n distinct whole
numbers {k1, k2, ...kn}, one can form a 2n-order approximation
of e∆t(A+D) via

e∆t(A+D) =
n∑

i=1

ciT ki
2

(
∆t
ki

)
+ e2n+1(h2n+1E2n+1). (31)

with closed form solutions

ci =
n∏

j=1( 6=i)

k2
i

k2
i − k2

j
(32)

and error coefficient,

e2n+1 = (−1)n−1
n∏

i=1

1
k2

i
. (33)
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The expansion coefficients ci are determined by a specially
simple Vandermonde equation:


1 1 1 . . . 1

k−2
1 k−2

2 k−2
3 . . . k−2

n

k−4
1 k−4

2 k−4
3 . . . k−4

n
...

...
...

. . .
...

k−2(n−1)
1 k−2(n−1)

2 k−2(n−1)
3 . . . k−2(n−1)

n




c1
c2
c3
. . .
cn

 =


1
0
0
. . .
0


(34)
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Since

T ki
2

(
∆t
k i

)
= exp

(
∆t(A(t) + D) +

∆t3

k2
i

E3 +
∆t5

k4
i

E5 + · · ·

)
,

(35)
the coefficients ci so determined by (34), guarantees that all
error terms in (24) and (35) when expanded from the
exponential, including cross-terms, vanish up to order 2n. That
is, the extrapolation acts correctly on the entire exponential and
not just on the exponent. The above explicit form corresponds
to the harmonic sequence {k1, k2, k3, . . .} = {1, 2, 3, . . .}.
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In the case of A(t) = T + V (t), the second order algorithm is
then

T2(∆t) = e∆tA(t+ 1
2 ∆t) = e

1
2 ∆tT e∆tV (t+∆t/2)e

1
2 ∆tT + O(∆t3). (36)

Proposition
An error estimates is given as:

e
1
2 ∆tT e∆tV e

1
2 ∆tT = e∆t(T+V )+∆t3E3+∆t5E5+..., with (37)

E3 = − 1
24

[TTV ]− 1
12

[VTV ],

E5 =
7

5760
[T 4V ] +

1
480

[T 2VTV ] +
1

360
[VT 3V ] +

1
120

[VTVTV ],

where [T 2V ] = [T , [T , V ]] and [T 4V ] = [T , [T , [T , [T , V ]]]] etc.,
denote nested commutators, where [VVTV ] = 0.
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The estimation of the error terms are given as:

||E3|| = || − 1
24

[TTV ]− 1
12

[VTV ]|| (38)

≤ 1
24
||T 2||||V ||+ 1

12
||T ||||V 2||,

||E5|| = || 7
5760

[TTTTV ] +
1

480
[TTVTV ] (39)

+
1

360
[VTTTV ] +

1
120

[VTVTV ]||

≤ 7
5760

||T 4||||V ||+ 7
1440

||T 3||||V 2||+ 1
120

||T 2||||V 3||
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General:
Magnus expansion and the exponential-splitting scheme
require exponentially growing number of operators at higher
orders.
Suzuki’s rule of incorporating time-ordering operators reduce
this fundamental requirement of exponentially growing.
Currently, only MPE, which systematically removes each
odd-order error term by extrapolation, limits the growth of
operators quadratically.
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Error analysis of the Multi-product expansion

The convergence analysis is based on the restriction to
exponential splitting, our proof of convergence based on the
general framework of [Ostermann, Hansen 2008].
We assume small h, the second-order decomposition is
bounded as follow:

||T2(h)|| = ||exp(
1
2

hD) exp(hA(t)) exp(
1
2

hD)|| ≤ exp(cωh),

(40)
with c only depends on the coefficients of the method and ω is
a constant. We can then derive the following convergence
results for the multi-product expansion.
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Theorem
For the numerical solution of (2), we consider our MPE method
(31) of order 2n + 1 and we apply Assumption (40), then we
have:

||
(
Sm − exp(mh(A(t) + D))

)
u0|| ≤ CO(h2n+1), mh ≤ T , (41)

where S =
∑n

i=1 ciT ki
2 ( h

ki
) and C is to be chosen uniformly on

bounded time intervals and independent of m and h for
sufficient small h.
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Proof.
We apply the telescopic identity and obtain:(

Sm − exp(mh(A(t) + D))
)

u0 = (42)
m−1∑
ν=0

Sm−ν−1(S − exp(h(A(t) + D))) exp(νh(A(t) + D))u0.

where S =
∑n

i=1 ciT ki
2 ( h

ki
)

We apply assumption (40) and yield to the stability:

||
n∑

i=1

ciT ki
2 (

h
ki

)|| ≤ exp(cωh). (43)
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We assume that the consistency is bound:

||
n∑

i=1

ciT ki
2 (

h
ki

)− exp(h(A + D))|| ≤ O(h2n+1) (44)

is valid, we have the following error bound:

||
(
Sm − exp(mh(A(t) + D))

)
u0|| ≤ CO(h2n+1), mh ≤ T , (45)

The consistency is derived in the following theorem.
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Theorem
For the numerical solution of (2), we have the following
consistency:

||
n∑

i=1

ciT ki
2 (

h
ki

)− exp(h(A + D))|| ≤ O(h2n+1). (46)
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Proof.
Based on the derivation of the coefficients via the
Vandermonde equation the product is bounded and we have:

n∑
k=1

ckT k
2 (

h
k

) (47)

=
n∑

k=1

ck

(
exp((A + B)h)− (k−2h3E3 + k−4h5E5 + . . .)

)
,

=
n∑

k=1

ck

(
exp((A + B)h)−

n∑
i

k−2ih2i+1E2i+1

)
,
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=

(
exp((A + B)h)−

n∑
k=1

ck

n∑
i

k−2ih2i+1E2i+1

)
,

= O(h2n+1). (48)
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Lemma
We assume ||A(t)|| to be bounded in the interval t ∈ (0, T ).
Then T2 is non-singular for sufficient small h.

Proof.
We use our assumption |A(t)| is to be bounded in the interval
0 < t < T .
So we can find ||A(t)|| < C for 0 < t < T .
Therefore T2 is always non-singular for sufficiently small h.
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Theorem
We assume T2 is non-singular, see previous Lemma. If T2 is
non-singular, then the entire MPE is non-singular and we have
a uniform convergence.

Proof.
Since

T2 = exp(hA(t + h/2)), (49)

for sufficient small h << 1, we have

T2 = 1 + h A(t). (50)

Thus if ||A(t)|| is bounded in 0 ≤ t ≤ T , then T2 is nonsingular
and bounded, and we have uniform convergence in [0, T ]. see
[Yoshida 1980].
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Numerical Experiments
Example 1: The non-singular matrix case
To assess the convergence of the Multi-product expansion with
that of the Magnus series, consider the well known example
[moan 2008] of

A(t) =

(
2 t
0 −1

)
. (51)

The exact solution to (2) with Y (0) = I is

Y (t) =

(
e2t f (t)
0 e−t

)
, (52)
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with

f (t) =
1
9
e−t(e3t − 1− 3t) (53)

=
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420

+
31t8

40320
+

t9

6720
+

13t10

403200
+

13t11

178200
(54)
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For the Magnus expansion, one has the series

Ω(t) =

(
2t g(t)
0 −t

)
, (55)

with, up to the 10th order,

g(t) =
1
2

t2 − 1
4

t3 +
3

80
t5 − 9

1120
t7 +

81
44800

t9 + · · ·

→ t(e3t − 1− 3t)
3(e3t − 1)

. (56)

Exponentiating (55) yields (52) with

f (t) = te−t(e3t − 1)

(
1
6
− 1

12
t +

1
80

t3 − 3
1120

t5 +
27

44800
t7 + · · ·

)
→ te−t(e3t − 1)

(
1
9t
− 1

3(e3t − 1)

)
(57)
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The multi-product expansion suffers no such drawbacks.
From (23), by setting ∆t = t and t = 0, we have

T2(t) = exp
[
t
(

2 1
2 t

0 −1

)]
=

(
e2t f2(t)
0 e−t

)
(58)

with
f2(t) =

1
6

te−t(e3t − 1). (59)
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This is identical to first term of the Magnus series (57) and is an
entire function of t . Since higher order MPE uses only powers
of T2, higher order MPE approximations are also entire
functions of t . Thus up to the 10th order, one finds

f4(t) = te−t

(
e3t − 5

18
+

2e3t/2

9

)
(60)

f6(t) = te−t
(

11e3t − 109
360

+
9

40
(e2t + et)− 8

45
e3t/2

)
(61)

Jürgen Geiser, Humboldt Universität zu Berlin, Germany ”High-order actions and their applications” to honor our friend and collaborator Siu A. Chin Universitat Politecnica de Catalunya, Barcelona, Spain Lecture: Magnus Expansion and Suzuki’s Method



Outline of the Talk
Timedependent Decomposition Methods
Magnus expansion and Suzuki’s method

Error analysis of the Multi-product expansion
Numerical Examples

Conclusions

f8(t) = te−t
(

151e3t − 2369
7560

+
256
945

(e9t/4 + e3t/4) (62)

− 81
280

(e2t + et) +
104
315

e3t/2
)

f10(t) = te−t
(

15619e3t − 347261
1088640

+
78125
217728

(e12t/5 + e9t/5

+e6t/5 + e3t/5)− 4096
8505

(e9t/4 + e3t/4) +
729
4480

(e2t + et)

−4192
8505

e3t/2
)

. (63)
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When expanded, the above yields

f2(t) =
t2

2
+

t3

4
+ · · ·

f4(t) =
t2

2
+

t4

8
+

5t5

192
+ · · ·

f6(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

384
+ · · ·

(64)
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f8(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320

+
1307t9

8601600
+ · · · (65)

f10(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320
+

t9

6720

+
13t10

403200
+

13099t11

232243200
+ · · · (66)

and agree with the exact solution to the claimed order.
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Figure: The black line is the exact result (53). The blue lines are the
Magnus fourth to tenth order results (57), which diverge from the
exact result beyond t > 2. The red lines are the multi-product
expansions. The purple line is their common second order result.
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Results:
The Magnus series (56) and (57) only converge for |t | < 2

3π due
to the pole at t = 2

3πi .
The MPE series convergences uniform for all t .
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Experiment 2: The radial Schödinger equation
We consider the radial Schrödinger equation

∂2u
∂r2 = f (r , E)u(r) (67)

where

f (r , E) = 2V (r)− 2E +
l(l + 1)

r2 , (68)

By relabeling r → t and u(r) → q(t), (67) can be viewed as
harmonic oscillator with a time dependent spring constant

k(t , E) = −f (t , E) (69)
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and Hamiltonian

H =
1
2

p2 +
1
2

k(t , E)q2. (70)

Thus any eigenfunction of (67) is an exact time-dependent
solution of (70). For example, the ground state of the hydrogen
atom with l = 0, E = −1/2 and

V (r) = −1
r

(71)

yields the exact solution

q(t) = t exp(−t) (72)

with initial values q(0) = 0 and p(0) = 1.
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Denoting

Y (t) =

(
q(t)
p(t)

)
, (73)

the time-dependent oscillator (70) now corresponds to

A(t) =

(
0 1

f (t) 0

)
=

(
0 1
0 0

)
+

(
0 0

f (t) 0

)
≡ T + V (t), (74)

with
f (t) = (1− 2

t
). (75)
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In this case, the second-order midpoint algorithm is

T2(h, t) = e
1
2 hT ehV (t+h/2)e

1
2 hT

=

(
1 + 1

2h2f (t + 1
2h) h + 1

4h3f (t + 1
2h)

hf (t + 1
2h) 1 + 1

2h2f (t + 1
2h),

)
(76)

and for q(0) = 0 and p(0) = 1, (setting t = 0 and h = t),
correctly gives the second order result,

q2(t) = t +
1
4

t3f (
1
2

t) = t − t2 +
1
4

t3. (77)
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Higher order multi-product expansions, using (76), then yield

q4(t) = t − t2 +
7t3

18
− t4

9
+

t5

96

q6(t) = t − t2 +
211t3

450
− 31t4

225
+

17t5

600
+ · · ·

q8(t) = t − t2 +
32233t3

66150
− 5101t4

33075
+

3139t5

88200
+ · · ·

q10(t) = t − t2 +
88159t3

1786050
− 143177t4

893025
+

91753t5

2381400
+ · · ·(78)
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Figure: The uniform convergence of the multi-product expansion in
solving for the hydrogen ground state wave function. (Black line:
exact ground state wave function, The numbers indicates the order of
the MPE. Blue lines: various fourth-order algorithms.
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Remarks:
While wel-known higher order splitting method, as FR
(Forest-Ruth 1990, 3 force-evaluations), M (McLachlan 1995, 4
force-evaluations), BM (Blanes-Moan 2002, 6
force-evaluations), Mag4 (Magnus integrator, see below, ≈ 2.5
force-evaluations) leaks with the accuracy, MPE series up to
the 100th order, matches against the exact solution and 4B
[Chin 2006] (a forward symplectic algorithm with only ≈ 2
evaluations).
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Figure: A precision-effort comparison of various fourth-order
algorithms with that of MPE for computing the ground state of a
spiked harmonic oscillator. N is the number of force-evaluations.
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Conclusions

We present an alternative method: MPE of operators together
with Suzuki’s rule of incorporating the time-ordered exponential.
We have compared the MPE method with that of the Magnus
expansion and found that in cases where the Magnus
expansion has a finite radius of convergence, the MPE
converges uniformly.
Moreover, MPE requires far less operators at higher orders
than either the Magnus series or conventional
exponential-splitting. In the future we will focus on applying
MPE method for solving nonlinear differential equations.
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