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Quantum many-body theory at
T > 0

At T = 0, several options: perturbative series,
variational method, integral equations (HNC), . . .

Also Monte Carlo: VMC; GFMC and DMC=⇒
Exact results for bosons and probably the best
ones for fermions

ForT > 0, the problem becomes more difficult
and the number of possible approaches reduces

Monte Carlo+ Path Integral (Feynman) (PIMC)
has proven to be one of the best options . . . if not
the only reliable one for correlated systems
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Density matrix in Statistical
Mechanics
• Thermal density matrix:̂ρ = e−βĤ, with Ĥ the
Hamiltonian of the system andβ = 1/T

• The expectation value of any operatorO is

〈O〉 = Z−1
∑

i

〈φi|O|φi〉e
−βEi

with Z =
∑

i e
−βEi the partition function

• Projecting to the coordinate space,

〈O〉 = Z−1

∫

dRdR′ ρ(R,R′;β)〈R|O|R′〉

with
ρ(R,R′;β) =

∑

i

e−βEiφ⋆
i (R)φi(R

′)
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Convolution property of the density
matrix
• The density matrix can always be decomposed as

ρ(R1,R2;β) =

∫

dR3 ρ(R1,R3;β/2)ρ(R3,R2;β/2)

Important:We get information at a temperature
T = 1/β from knowledge at a temperature twice larger
T = 2/β.
• By iteratingM times,

ρ(R0,RM ;β) =

∫

dR1 . . . dRM−1 ρ(R0,R1; ǫ) . . . ρ(RM−1,RM ; ǫ)

with ǫ = β/M

High-order actions’09 – p.4/28



Trotter formula

Exact result forρ(R,R′;β) would require to know
the full spectrum ofH: impossible in practice

High-order actions’09 – p.5/28



Trotter formula

Exact result forρ(R,R′;β) would require to know
the full spectrum ofH: impossible in practice

ConsiderĤ = K̂ + V̂ . Using the
Baker-Campbell-Hausdorff formula,

e−ǫK̂e−ǫV̂ = e−ǫ(K̂+V̂ )eǫ2C2−ǫ3C3+...

with C2 = 1
2 [K̂, V̂ ] andC3 = 1

12 [K̂ − V̂ , [K̂, V̂ ]]
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Trotter formula

Exact result forρ(R,R′;β) would require to know
the full spectrum ofH: impossible in practice

ConsiderĤ = K̂ + V̂ . Using the
Baker-Campbell-Hausdorff formula,

e−ǫK̂e−ǫV̂ = e−ǫ(K̂+V̂ )eǫ2C2−ǫ3C3+...

with C2 = 1
2 [K̂, V̂ ] andC3 = 1

12 [K̂ − V̂ , [K̂, V̂ ]]

WhenM → ∞, ǫ = β/M → 0, the linear term
dominates=⇒ Trotter Formula

e−βĤ = lim
M→∞

(

e−βK̂/Me−βV̂ /M
)M
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Primitive Approximation

¨ In a first approximation (Primitive Approximation
(PA)), terms of orderǫ2 and higher are neglected

e−ǫ(K̂+V̂ ) = e−ǫK̂e−ǫV̂

¨ Kinetic and potential terms are easily evaluated

〈R|e−ǫ(K̂+V̂ )|R′〉 =

∫

dR′′〈R|e−ǫK̂ |R′′〉〈R′′|e−ǫV̂ |R′〉

since they can be computed separately
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Primitive Approximation

¨ The partition function is (R ≡ {r1, . . . , rN})

Z =

∫

dR1 . . . dRM

M
∏

α=1

ρPA(Rα,Rα+1) with RM+1 = R1

¨ Introducing explicitly the kinetic and potential
terms

ρPA(Rα,Rα+1) =

(

Mm

2πβ~2

)3N/2

exp







−

N
∑

i=1

Mm

2β~2
(rα,i − rα+1,i)

2 −
β

M

N
∑

i<j

V (rα,ij)
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Mapping the quantum problem to a
classical one

The quantum problem can be
mapped to a classical problem of
polymers (Chandler & Wolynes
(1981))
• Everyquantum particle is described as a polymer with a
number of beads which increases when the temperatureT

decreases
• Every bead interacts with all the beads having the same index
throughV (r); harmonic coupling between successive beads of a
given particle

exp

[

−
Mm

2β~2
(rα,i − rα+1,i)

2

]
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Mapping the quantum problem to a
classical one
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Convergence of PA

• The primitive approximation is accurate to second
order inǫ2

1D Harmonic oscillator at
T = 0.2

 0.48

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 0  0.02  0.04  0.06  0.08  0.1  0.12

E

1/M

• Reasonable accuracy for semiclassical problems

• Not enough for quantum liquids, especially for their
superfluid phases; in liquid4He (∼ 3000 beads=⇒
slowing down)
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First correction to PA: Takahashi-
Imada

Takahashi & Imada (1984), and independently Li
& Broughton (1987), proposed a new action with
a trace accurate to orderǫ4

The double commutator[[V̂ , K̂], V̂ ] = ~
2/m(∇V )2 is

introduced, and the bare potentialV̂ =
∑

i<j V (rα,ij)

is substituted by

ŴTI =
N

∑

i<j

V (rij) +
1

24

(

β

M

)2

Ŵ

with Fi =
∑N

j 6=i ∇iV (rij) andŴ = (~2/m)
∑N

i=1 |Fi|
2
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First correction to PA: Takahashi-
Imada
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L. Brualla, K. Sakkos, J. B., and J. Casulleras, J. Chem. Phys.
121, 636 (2004)
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Possible paths for improvement
Takahashi-Imada (TIA) behaves asǫ4; not enough
for reaching efficiently superfluid regimes
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Possible paths for improvement
Takahashi-Imada (TIA) behaves asǫ4; not enough
for reaching efficiently superfluid regimes
Ceperley & Pollock introduced the pair action
(PDM)

ρ(R,R′; ǫ) =
N
∏

i=1

ρ(ri, r
′

i; ǫ)
N
∏

i<j

exp
[

−U(rij , r
′

ij ; ǫ)
]
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∏
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∏
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PDM is accurate, but not easy to use and
restricted in practice to radial potentials
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Possible paths for improvement
Takahashi-Imada (TIA) behaves asǫ4; not enough
for reaching efficiently superfluid regimes
Ceperley & Pollock introduced the pair action
(PDM)

ρ(R,R′; ǫ) =
N
∏

i=1

ρ(ri, r
′

i; ǫ)
N
∏

i<j

exp
[

−U(rij , r
′

ij ; ǫ)
]

PDM is accurate, but not easy to use and
restricted in practice to radial potentials

In our group we have followed a different way: to
achieve higher orders in the expansion ofe−ǫĤ

following recent proposals ofSiu Chin
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Chin Action (t0, a1) (I)

We chose the (t0, a1) expansion due to its higher
flexibility (S. A. Chin and C. R. Chen, J. Chem. Phys.117,
1409 (2002)); exactǫ6 order for the harmonic oscillator

e−ǫĤ ≃ e−v1ǫŴa1e−t1ǫT̂ e−v2ǫŴ1−2a1e−t1ǫT̂ e−v1ǫŴa1e−2t0ǫT̂

with
Ŵa1

= V̂ + (u0/v1)a1ǫ
2 Ŵ (0 ≤ a1 ≤ 1)

Ŵ1−2a1
= V̂ + (u0/v2)(1 − 2a1)ǫ

2 Ŵ

and parameters

v1 = 1
6(1−2t0)2

t1 = 1
2 − t0 (0 ≤ t0 ≤ 1

2(1 − 1√
3
))

v2 = 1 − 2v1 u0 = 1
12

[

1 − 1
1−2t0

+ 1
6(1−2t0)3

]
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Chin Action (t0, a1) (II)

Explicitly,

ρT0A1(Rα,Rα+1) =

( m

2π~2ǫ

)9N/2
(

1

2t21t0

)3N/2 ∫

dRαAdRαB exp

{

−
m

2~2ǫ

×

N
∑

i=1

[

1

t1
(rα,i − rαA,i)

2 +
1

t1
(rαA,i − rαB,i)

2 +
1

2t0
(rαB,i − rα+1,i)

2

]

−ǫ
N

∑

i<j

(v1V (rα,ij) + v2V (rαA,ij) + v1V (rαB,ij))

−ǫ3u0

~
2

m

N
∑

i=1

(

a1|Fα,i|
2 + (1 − 2a1)|FαA,i|

2 + a1|FαB,i|
2
)

}

K. Sakkos, J. Casulleras, and J. B., arXiv:0903.2763
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Chin Action (t0, a1) (II)

Schematically,

e−ǫĤ ≃ e−v1ǫŴa1e−t1ǫT̂ e−v2ǫŴ1−2a1e−t1ǫT̂ e−v1ǫŴa1e−2t0ǫT̂
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PIMC Estimators
Properties of the system are calculated using statistical
estimators which use the stochastic variables of the p.d.f.
generated by the Metropolis method

〈O〉 =
1

Ns

Ns
∑

i=1

O(Ri)

• Total energy (thermodynamic):E/N = −(1/NZ)∂Z/∂β

• Kinetic energy (thermodynamic):K/N = (m/NβZ)∂Z/∂m

• Potential energy:V/N = E/N − K/N

• In general, for any operatorO(R),

O(R) = −
1

β

1

Z(V )

dZ(V + λO)

dλ

∣

∣

∣

∣

λ=0
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Sampling in PIMC
Simplest method: bead a bead+ movement of
the center of mass of the polymer
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Simplest method: bead a bead+ movement of
the center of mass of the polymer

But . . . slowing down problems for long chains
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the center of mass of the polymer

But . . . slowing down problems for long chains

Smart collective movements are necessary to
eliminate the slowing down in the sampling
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Sampling in PIMC
Simplest method: bead a bead+ movement of
the center of mass of the polymer

But . . . slowing down problems for long chains

Smart collective movements are necessary to
eliminate the slowing down in the sampling
We use thestaging method, which allows for an
exact sampling of the free action (harmonic
bead-bead couplings)

ρ0(xi, xi+1; ǫ) . . . ρ0(xi+j−1, xi+j ; ǫ) =
(

m

2π~2jǫ

)1/2

exp

[

−
m

2~2jǫ
(xi − xi+j)

2

]

×

j−2
∏

k=0

( mk

2π~2ǫ

)1/2

exp
[

−
mk

2~2ǫ
(xi+k+1 − x⋆

i+k+1)
2

]
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Chin Action: optimization
. . . Coming back to the Chin’s approximation for the
action, we need to work on a previous step=⇒
Optimization of the parameterst0 anda1
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Chin Action: optimization
. . . Coming back to the Chin’s approximation for the
action, we need to work on a previous step=⇒
Optimization of the parameterst0 anda1

1D Harmonic Oscillator
T = 0.1

a1 = 0.33

t0 = 0.09, 0.10, . . . , 0.15

(from top to bottom)

0.50676
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0.50678

0.50679

0.50680

0.00 0.05 0.10 0.15
E

1/M

The zero-slope curve is crossed !
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Optimization (II)
Harmonic oscillator (T = 0.1)
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Isotime curves (= number of beads) Optimal values:PRE71, 056703 (2005)

a1 = 0.33 a1 = 0.00 t0 = 0.1430
a1 = 0.14 t0 = 0.0724
a1 = 0.25 t0 = 0.1094
a1 = 0.33 t0 = 0.1215
a1 = 0.45 t0 = 0.1298
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Results for different actions

Harmonic oscillator (T = 0.2)
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•→ PA (M = 512) ¥ → TIA (M = 128)

N → Chin-t0 (M = 6) ¨ → Chin-(t0,a1) (M = 4)
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Results for different actions

H2 drop with N = 22 (T = 6 K)
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Results for different actions

Liquid 4He (T = 5.1 K)
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Results for more exigent problems
. . .
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The lines correspond to 6th order fits:
E/N = (E/N)0 + A(1/M)6
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Computational efficiency

Cost per Reduction # Performance
bead beads factor

PA 1.0 1 1.0
TIA 2.9 4 1.4
Chin-t0 4.8 38 7.9
Chin-(t0, a1) 7.2 58 8.0

The computational cost per bead increases appreciably, butthis
increase is largely compensated for the sizeable decrease of the
number of beads required to reach the asymptoteǫ → 0

High-order actions’09 – p.19/28



Symmetrization: sampling of per-
mutations
• At very low temperatures
T ≃ Tc it is necessary to
introduce the correct
quantum statistics
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Symmetrization: sampling of per-
mutations
• At very low temperatures
T ≃ Tc it is necessary to
introduce the correct
quantum statistics

• For bosons the action must
be symmetric

ρB(R0,R1; β) =
1

N !

X

P

ρ(R0, PR1; β)
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Symmetrization: sampling of per-
mutations
• At very low temperatures
T ≃ Tc it is necessary to
introduce the correct
quantum statistics

• For bosons the action must
be symmetric

ρB(R0,R1; β) =
1

N !

X

P

ρ(R0, PR1; β)

• Sampling the permutation
space produces longer
polymeric chains which are
formed by more than one
particle:

SUPERFLUIDITY
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Permutations

• Sampling over all the possi-
ble paths and connections

• Care has to be taken to en-
sure the achievement of equi-
librium during the time of a
simulation (many atoms in-
volved)
• To take into account cor-
rectly the periodic bound-
ary conditions to have always
continuous paths

D. M. Ceperley, Rev. Mod. Phys.67, 271 (1995)
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Proposing a pair permutation . . .

Initially the two atoms

are separated

A staging chain is

constructed connect-

ing the bead J of atom

1 with the bead J+m

of atom 2

A staging chain is

constructed connect-

ing the bead J of atom

2 with the bead J+m

of atom 1
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Efficiency in the permutation sam-
pling

Over all the trial permutations only 5% are
accepted (free-action test) and therefore sampled

Over all the permutations sampled only 1% are
accepted by Metropolis=⇒ Very low efficiency

The length of the staging chain (joining different
particles) is selected for maximizing the ratio of
Metropolis-accepted permutations per real time
unit

Permutations involving more than 3 or 4
polymers are extremely difficult to appear,. . . but
they are important for a correct estimation of the
superfluid density
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New proposal: Worm Algorithm

• Proposed for Prokof’ev,

Boninsegni and Svistunov for

PIMC in the grand canonical

ensemble.

• Key ingredient: An open

chain (worm) is introduced in

the simulation.

• By the swap operation, long

permutations are in practice

achieved.

• Specially useful for the

estimation of the superfluid

density and the one-body

density matrix.
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Results for bulk 4He
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Efficiency of Chin action is conserved after
symmetrization
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Results for bulk 4He
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Results for bulk 4He
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Results for bulk 4He

0.0

0.4

0.8

1.2

 0  2  4  6  8  10

g(
r)

r(Å)

Expt
DMC
PIMC

Two-body radial distribution function

High-order actions’09 – p.25/28



Results for bulk 4He
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Results for bulk 4He
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Small 4He drops
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Small 4He drops
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Small 4He drops
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Conclusions
The action(t0, a1) has been used for the first time
in PIMC and has shown a 6th order efficiency, not
only in model problems but in real and more
exigent systems (4He, H2)

With respect to the Takahashi-Imada
approximation, the new action does not require
any additional derivative of the potential

Migrating a TIA code to a Chin one is rather easy
since the basic routines are the same

In spite of substituting a bead by three beads, the
efficiency of the staging corresponds to the one of
a time stepǫ
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Conclusions
Easier, general and with a more clear dependence
with ǫ than the pair action approximation
(Ceperley)

The introduction of theworm allows for a better
sampling of permutations=⇒ best results forn0

andρs/ρ

This is our choice for finite-temperature
simulations in quantum fluids. . .
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Conclusions
Easier, general and with a more clear dependence
with ǫ than the pair action approximation
(Ceperley)

The introduction of theworm allows for a better
sampling of permutations=⇒ best results forn0

andρs/ρ

This is our choice for finite-temperature
simulations in quantum fluids. . .

THANKS FOR YOUR ATTENTION !
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