High-order Chin actions in path integral Monte Carlo

High-order actions and their applications, Barcelona 2009

Jordi Boronat

Departament de Física i Enginyeria Nuclear Universitat Politècnica de Catalunya Barcelona, Spain

In collaboration with: Joaquim Casulleras, Konstantinos Sakkos and Riccardo Rota

Quantum many-body theory at $\mathrm{T}>0$

- At $T=0$, several options: perturbative series, variational method, integral equations (HNC), ...
- Also Monte Carlo: VMC; GFMC and DMC \Longrightarrow Exact results for bosons and probably the best ones for fermions
- For $T>0$, the problem becomes more difficult and the number of possible approaches reduces
- Monte Carlo + Path Integral (Feynman) (PIMC) has proven to be one of the best options ... if not the only reliable one for correlated systems

Density matrix in Statistical Mechanics

- Thermal density matrix: $\hat{\rho}=e^{-\beta \hat{H}}$, with \hat{H} the Hamiltonian of the system and $\beta=1 / T$
- The expectation value of any operator \mathcal{O} is

$$
\langle\mathcal{O}\rangle=Z^{-1} \sum_{i}\left\langle\phi_{i}\right| \mathcal{O}\left|\phi_{i}\right\rangle e^{-\beta E_{i}}
$$

with $Z=\sum_{i} e^{-\beta E_{i}}$ the partition function

- Projecting to the coordinate space,

$$
\langle\mathcal{O}\rangle=Z^{-1} \int d \mathbf{R} d \mathbf{R}^{\prime} \rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \beta\right)\langle\mathbf{R}| \mathcal{O}\left|\mathbf{R}^{\prime}\right\rangle
$$

with

$$
\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \beta\right)=\sum_{i} e^{-\beta E_{i}} \phi_{i}^{\star}(\mathbf{R}) \phi_{i}\left(\mathbf{R}^{\prime}\right)
$$

Convolution property of the density matrix

- The density matrix can always be decomposed as

$$
\rho\left(\mathbf{R}_{1}, \mathbf{R}_{2} ; \beta\right)=\int d \mathbf{R}_{3} \rho\left(\mathbf{R}_{1}, \mathbf{R}_{3} ; \beta / 2\right) \rho\left(\mathbf{R}_{3}, \mathbf{R}_{2} ; \beta / 2\right)
$$

Important: We get information at a temperature $T=1 / \beta$ from knowledge at a temperature twice larger $T=2 / \beta$.

- By iterating M times,

$$
\rho\left(\mathbf{R}_{0}, \mathbf{R}_{M} ; \beta\right)=\int d \mathbf{R}_{1} \ldots d \mathbf{R}_{M-1} \rho\left(\mathbf{R}_{0}, \mathbf{R}_{1} ; \epsilon\right) \ldots \rho\left(\mathbf{R}_{M-1}, \mathbf{R}_{M} ; \epsilon\right)
$$

with $\epsilon=\beta / M$

Trotter formula

- Exact result for $\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \beta\right)$ would require to know the full spectrum of H : impossible in practice

Trotter formula

- Exact result for $\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \beta\right)$ would require to know the full spectrum of H : impossible in practice
- Consider $\hat{H}=\hat{K}+\hat{V}$. Using the Baker-Campbell-Hausdorff formula,

$$
\begin{gathered}
e^{-\epsilon \hat{K}} e^{-\epsilon \hat{V}}=e^{-\epsilon(\hat{K}+\hat{V})} e^{\epsilon^{2} C_{2}-\epsilon^{3} C_{3}+\ldots} \\
\text { with } C_{2}=\frac{1}{2}[\hat{K}, \hat{V}] \text { and } C_{3}=\frac{1}{12}[\hat{K}-\hat{V},[\hat{K}, \hat{V}]]
\end{gathered}
$$

Trotter formula

- Exact result for $\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \beta\right)$ would require to know the full spectrum of H : impossible in practice
- Consider $\hat{H}=\hat{K}+\hat{V}$. Using the Baker-Campbell-Hausdorff formula,

$$
e^{-\epsilon \hat{K}} e^{-\epsilon \hat{V}}=e^{-\epsilon(\hat{K}+\hat{V})} e^{\epsilon^{2} C_{2}-\epsilon^{3} C_{3}+\ldots}
$$

with $C_{2}=\frac{1}{2}[\hat{K}, \hat{V}]$ and $C_{3}=\frac{1}{12}[\hat{K}-\hat{V},[\hat{K}, \hat{V}]]$

- When $M \rightarrow \infty, \epsilon=\beta / M \rightarrow 0$, the linear term dominates \Longrightarrow Trotter Formula

$$
e^{-\beta \hat{H}}=\lim _{M \rightarrow \infty}\left(e^{-\beta \hat{K} / M} e^{-\beta \hat{V} / M}\right)^{M}
$$

Primitive Approximation

\checkmark In a first approximation (Primitive Approximation
(PA)), terms of order ϵ^{2} and higher are neglected

$$
e^{-\epsilon(\hat{K}+\hat{V})}=e^{-\epsilon \hat{K}} e^{-\epsilon \hat{V}}
$$

- Kinetic and potential terms are easily evaluated

$$
\langle\mathbf{R}| e^{-\epsilon(\hat{K}+\hat{V})}\left|\mathbf{R}^{\prime}\right\rangle=\int d \mathbf{R}^{\prime \prime}\langle\mathbf{R}| e^{-\epsilon \hat{K}}\left|\mathbf{R}^{\prime \prime}\right\rangle\left\langle\mathbf{R}^{\prime \prime}\right| e^{-\epsilon \hat{V}}\left|\mathbf{R}^{\prime}\right\rangle
$$

since they can be computed separately

Primitive Approximation

- The partition function is $\left(\mathbf{R} \equiv\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\}\right)$

$$
Z=\int d \mathbf{R}_{1} \ldots d \mathbf{R}_{M} \prod_{\alpha=1}^{M} \rho_{\mathrm{PA}_{A}}\left(\mathbf{R}_{\alpha}, \mathbf{R}_{\alpha+1}\right) \quad \text { with } \quad \mathbf{R}_{M+1}=\mathbf{R}_{1}
$$

\checkmark Introducing explicitly the kinetic and potential terms

$$
\begin{aligned}
& \rho_{\mathrm{PA}}\left(\mathbf{R}_{\alpha}, \mathbf{R}_{\alpha+1}\right)= \\
& \quad\left(\frac{M m}{2 \pi \beta \hbar^{2}}\right)^{3 N / 2} \exp \left\{-\sum_{i=1}^{N} \frac{M m}{2 \beta \hbar^{2}}\left(\mathbf{r}_{\alpha, i}-\mathbf{r}_{\alpha+1, i}\right)^{2}-\frac{\beta}{M} \sum_{i<j}^{N} V\left(r_{\alpha, i j}\right)\right\}
\end{aligned}
$$

Mapping the quantum problem to a classical one

The quantum problem can be mapped to a classical problem of polymers (Chandler \& Wolynes (1981))

- Every quantum particle is described as a polymer with a number of beads which increases when the temperature T decreases
- Every bead interacts with all the beads having the same index through $V(r)$; harmonic coupling between successive beads of a given particle

$$
\exp \left[-\frac{M m}{2 \beta \hbar^{2}}\left(\mathbf{r}_{\alpha, i}-\mathbf{r}_{\alpha+1, i}\right)^{2}\right]
$$

Mapping the quantum problem to a classical one

$5 \mathrm{H}_{2}$ molecules
with 32 beads at $T=6 \mathrm{~K}$

$5 \mathrm{H}_{2}$ molecules
with 256 beads at $T=1 \mathrm{~K}$

Convergence of PA

- The primitive approximation is accurate to second order in ϵ^{2}

1D Harmonic oscillator at $T=0.2$

- Reasonable accuracy for semiclassical problems
- Not enough for quantum liquids, especially for their superfluid phases; in liquid ${ }^{4} \mathrm{He}$ (~ 3000 beads \Longrightarrow slowing down)

First correction to PA: TakahashiImada

- Takahashi \& Imada (1984), and independently Li \& Broughton (1987), proposed a new action with a trace accurate to order ϵ^{4}
- The double commutator $[[\hat{V}, \hat{K}], \hat{V}]=\hbar^{2} / m(\nabla V)^{2}$ is introduced, and the bare potential $\hat{V}=\sum_{i<j} V\left(r_{\alpha, i j}\right)$ is substituted by

$$
\hat{W}_{\mathrm{TI}}=\sum_{i<j}^{N} V\left(r_{i j}\right)+\frac{1}{24}\left(\frac{\beta}{M}\right)^{2} \hat{W}
$$

with $\mathbf{F}_{i}=\sum_{j \neq i}^{N} \nabla_{i} V\left(r_{i j}\right)$ and $\hat{W}=\left(\hbar^{2} / m\right) \sum_{i=1}^{N}\left|\mathbf{F}_{i}\right|^{2}$

First correction to PA: TakahashiImada

1D Harmonic oscillator
$T=0.2$

Liquid $\mathrm{Ne}, \rho=0.0363 \AA^{-3}$
$T=25.8 \mathrm{~K}$
L. Brualla, K. Sakkos, J. B., and J. Casulleras, J. Chem. Phys. 121, 636 (2004)

Possible paths for improvement

- Takahashi-Imada (TIA) behaves as ϵ^{4}; not enough for reaching efficiently superfluid regimes

Possible paths for improvement

- Takahashi-Imada (TIA) behaves as ϵ^{4}; not enough for reaching efficiently superfluid regimes
- Ceperley \& Pollock introduced the pair action (PDM)

$$
\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \epsilon\right)=\prod_{i=1}^{N} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{i}^{\prime} ; \epsilon\right) \prod_{i<j}^{N} \exp \left[-U\left(\mathbf{r}_{i j}, \mathbf{r}_{i j}^{\prime} ; \epsilon\right]\right]
$$

Possible paths for improvement

- Takahashi-Imada (TIA) behaves as ϵ^{4}; not enough for reaching efficiently superfluid regimes
- Ceperley \& Pollock introduced the pair action (PDM)

$$
\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \epsilon\right)=\prod_{i=1}^{N} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{i}^{\prime} ; \epsilon\right) \prod_{i<j}^{N} \exp \left[-U\left(\mathbf{r}_{i j}, \mathbf{r}_{i j}^{\prime} ; \epsilon\right)\right]
$$

- PDM is accurate, but not easy to use and restricted in practice to radial potentials

Possible paths for improvement

- Takahashi-Imada (TIA) behaves as ϵ^{4}; not enough for reaching efficiently superfluid regimes
- Ceperley \& Pollock introduced the pair action (PDM)

$$
\rho\left(\mathbf{R}, \mathbf{R}^{\prime} ; \epsilon\right)=\prod_{i=1}^{N} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{i}^{\prime} ; \epsilon\right) \prod_{i<j}^{N} \exp \left[-U\left(\mathbf{r}_{i j}, \mathbf{r}_{i j}^{\prime} ; \epsilon\right)\right]
$$

- PDM is accurate, but not easy to use and restricted in practice to radial potentials
- In our group we have followed a different way: to achieve higher orders in the expansion of $e^{-\epsilon \hat{H}}$ following recent proposals of Siu Chin

Chin Action $\left(\mathrm{t}_{0}, \mathrm{a}_{1}\right)(\mathbf{I})$

We chose the $\left(t_{0}, a_{1}\right)$ expansion due to its higher flexibility (S. A. Chin and C. R. Chen, J. Chem. Phys. 117, 1409 (2002)); exact ϵ^{6} order for the harmonic oscillator

$$
e^{-\epsilon \hat{H}} \simeq e^{-v_{1} \epsilon \hat{W}_{a_{1}}} e^{-t_{1} \epsilon \hat{T}} e^{-v_{2} \epsilon \hat{W}_{1-2 a_{1}}} e^{-t_{1} \epsilon \hat{T}} e^{-v_{1} \epsilon \hat{W}_{a_{1}}} e^{-2 t_{0} \epsilon \hat{T}}
$$

with

$$
\begin{aligned}
\hat{W}_{a_{1}} & =\hat{V}+\left(u_{0} / v_{1}\right) a_{1} \epsilon^{2} \hat{W} \quad\left(0 \leq a_{1} \leq 1\right) \\
\hat{W}_{1-2 a_{1}} & =\hat{V}+\left(u_{0} / v_{2}\right)\left(1-2 a_{1}\right) \epsilon^{2} \hat{W}
\end{aligned}
$$

and parameters

$$
\begin{array}{ll}
v_{1}=\frac{1}{6\left(1-2 t_{0}\right)^{2}} & t_{1}=\frac{1}{2}-t_{0} \quad\left(0 \leq t_{0} \leq \frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right)\right) \\
v_{2}=1-2 v_{1} & u_{0}=\frac{1}{12}\left[1-\frac{1}{1-2 t_{0}}+\frac{1}{6\left(1-2 t_{0}\right)^{3}}\right]
\end{array}
$$

Chin Action ($\mathrm{t}_{0}, \mathrm{a}_{1}$) (II)

Explicitly,

$$
\begin{aligned}
& \rho_{\text {पоАI }}\left(\mathbf{R}_{\alpha}, \mathbf{R}_{\alpha+1}\right)= \\
& \quad\left(\frac{m}{2 \pi \hbar^{2} \epsilon}\right)^{9 N / 2}\left(\frac{1}{2 t_{1}^{2} t_{0}}\right)^{3 N / 2} \int d \mathbf{R}_{\alpha A} d \mathbf{R}_{\alpha B} \exp \left\{-\frac{m}{2 \hbar^{2} \epsilon}\right. \\
& \quad \times \sum_{i=1}^{N}\left[\frac{1}{t_{1}}\left(\mathbf{r}_{\alpha, i}-\mathbf{r}_{\alpha A, i}\right)^{2}+\frac{1}{t_{1}}\left(\mathbf{r}_{\alpha A, i}-\mathbf{r}_{\alpha B, i}\right)^{2}+\frac{1}{2 t_{0}}\left(\mathbf{r}_{\alpha B, i}-\mathbf{r}_{\alpha+1, i}\right)^{2}\right] \\
& \quad-\epsilon \sum_{i<j}^{N}\left(v_{1} V\left(r_{\alpha, i j}\right)+v_{2} V\left(r_{\alpha A, i j}\right)+v_{1} V\left(r_{\alpha B, i j}\right)\right) \\
& \left.\quad-\epsilon^{3} u_{0} \frac{\hbar^{2}}{m} \sum_{i=1}^{N}\left(a_{1}\left|\mathbf{F}_{\alpha, i}\right|^{2}+\left(1-2 a_{1}\right)\left|\mathbf{F}_{\alpha A, i}\right|^{2}+a_{1}\left|\mathbf{F}_{\alpha B, i}\right|^{2}\right)\right\}
\end{aligned}
$$

K. Sakkos, J. Casulleras, and J. B., arXiv:0903.2763

Chin Action ($\mathrm{t}_{0}, \mathrm{a}_{1}$) (II)

Schematically,
PA

$$
e^{-\epsilon \hat{H}} \simeq e^{-v_{1} \epsilon \hat{W} \hat{a}_{1}} e^{-t_{1} \epsilon \hat{T}} e^{-v_{2} \epsilon \hat{W}_{1-2 a_{1}}} e^{-t_{1} \epsilon \hat{T}} e^{-v_{1} \epsilon \hat{W}_{a_{1}}} e^{-2 t_{0} \epsilon \hat{T}}
$$

PIMC Estimators

Properties of the system are calculated using statistical estimators which use the stochastic variables of the p.d.f. generated by the Metropolis method

$$
\langle O\rangle=\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} O\left(\mathbf{R}_{i}\right)
$$

- Total energy (thermodynamic): $E / N=-(1 / N Z) \partial Z / \partial \beta$
- Kinetic energy (thermodynamic): $K / N=(m / N \beta Z) \partial Z / \partial m$
- Potential energy: $V / N=E / N-K / N$
- In general, for any operator $O(\mathbf{R})$,

$$
O(\mathbf{R})=-\left.\frac{1}{\beta} \frac{1}{Z(V)} \frac{d Z(V+\lambda O)}{d \lambda}\right|_{\lambda=0}
$$

Sampling in PIMC

- Simplest method: bead a bead + movement of the center of mass of the polymer

Sampling in PIMC

- Simplest method: bead a bead + movement of the center of mass of the polymer
- But ... slowing down problems for long chains

Sampling in PIMC

- Simplest method: bead a bead + movement of the center of mass of the polymer
- But ... slowing down problems for long chains
- Smart collective movements are necessary to eliminate the slowing down in the sampling

Sampling in PIMC

- Simplest method: bead a bead + movement of the center of mass of the polymer
- But ... slowing down problems for long chains
- Smart collective movements are necessary to eliminate the slowing down in the sampling
- We use the staging method, which allows for an exact sampling of the free action (harmonic bead-bead couplings)

$$
\begin{aligned}
& \rho_{0}\left(x_{i}, x_{i+1} ; \epsilon\right) \ldots \rho_{0}\left(x_{i+j-1}, x_{i+j} ; \epsilon\right)= \\
& \quad\left(\frac{m}{2 \pi \hbar^{2} j \epsilon}\right)^{1 / 2} \exp \left[-\frac{m}{2 \hbar^{2} j \epsilon}\left(x_{i}-x_{i+j}\right)^{2}\right] \\
& \quad \times \prod_{k=0}^{j-2}\left(\frac{m_{k}}{2 \pi \hbar^{2} \epsilon}\right)^{1 / 2} \exp \left[-\frac{m_{k}}{2 \hbar^{2} \epsilon}\left(x_{i+k+1}-x_{i+k+1}^{\star}\right)^{2}\right]
\end{aligned}
$$

Chin Action: optimization

... Coming back to the Chin's approximation for the action, we need to work on a previous step \Longrightarrow Optimization of the parameters t_{0} and a_{1}

Chin Action: optimization

... Coming back to the Chin's approximation for the action, we need to work on a previous step \Longrightarrow Optimization of the parameters t_{0} and a_{1}

> 1D Harmonic Oscillator
> $T=0.1$
> $a_{1}=0.33$
> $t_{0}=0.09,0.10, \ldots, 0.15$
> (from top to bottom)

The zero-slope curve is crossed !

Optimization (II)

Harmonic oscillator ($T=0.1$)

Isotime curves (= number of beads)
$a_{1}=0.33$

Optimal values: PRE 71, 056703 (2005

$$
\begin{array}{ll}
a 1=0.00 & t_{0}=0.1430 \\
a 1=0.14 & t_{0}=0.0724 \\
a 1=0.25 & t_{0}=0.1094 \\
a 1=0.33 & t_{0}=0.1215 \\
a 1=0.45 & t_{0}=0.1298
\end{array}
$$

Results for different actions

Harmonic oscillator ($T=0.2$)

$\rightarrow \rightarrow \mathrm{PA}(M=512) \quad \square \rightarrow$ TIA $(M=128)$
$\Delta \rightarrow \operatorname{Chin}-t_{0}(M=6) \quad \rightarrow \operatorname{Chin}-\left(t_{0}, a_{1}\right)(M=4)$

Results for different actions

$$
\mathrm{H}_{2} \text { DROP with } N=22(T=6 \mathrm{~K})
$$

$$
\begin{aligned}
- & \rightarrow \text { Chin- } t_{0} \quad \square \rightarrow \text { TIA } \\
& \rightarrow \text { PA }
\end{aligned}
$$

Results for different actions

$$
\text { Liquid }{ }^{4} \mathrm{He}(T=5.1 \mathrm{~K})
$$

\rightarrow PA $(M=512) \quad \square \rightarrow$ TIA $(M=128)$
$\Delta \rightarrow$ Chin- $t_{0}(M=20) \quad \rightarrow$ Chin- $\left(t_{0}, a_{1}\right)(M=14)$

Results for more exigent problems

H_{2} drop with 22 molecules
$T=1.0 \mathrm{~K}$

Liquid ${ }^{4} \mathrm{He}$
$T=0.8 \mathrm{~K}$

The lines correspond to 6 th order fits:

$$
E / N=(E / N)_{0}+A(1 / M)^{6}
$$

Computational efficiency

	Cost per bead	Reduction \# beads	Performance factor
PA	1.0	1	1.0
TIA	2.9	4	1.4
Chin- t_{0}	4.8	38	7.9
Chin- $\left(t_{0}, a_{1}\right)$	7.2	58	8.0

The computational cost per bead increases appreciably, but this increase is largely compensated for the sizeable decrease of the number of beads required to reach the asymptote $\epsilon \rightarrow 0$

Symmetrization: sampling of permutations

- At very low temperatures
$T \simeq T_{c}$ it is necessary to introduce the correct quantum statistics

Symmetrization: sampling of permutations

- At very low temperatures
$T \simeq T_{c}$ it is necessary to introduce the correct quantum statistics
- For bosons the action must be symmetric
$\rho_{\mathrm{B}}\left(\mathbf{R}_{0}, \mathbf{R}_{1} ; \beta\right)=\frac{1}{N!} \sum_{P} \rho\left(\mathbf{R}_{0}, P \mathbf{R}_{1} ; \beta\right)$

Symmetrization: sampling of permutations

- At very low temperatures $T \simeq T_{c}$ it is necessary to introduce the correct quantum statistics
- For bosons the action must be symmetric
$\rho_{\mathrm{B}}\left(\mathbf{R}_{0}, \mathbf{R}_{1} ; \beta\right)=\frac{1}{N!} \sum_{P} \rho\left(\mathbf{R}_{0}, P \mathbf{R}_{1} ; \beta\right)$
- Sampling the permutation space produces longer
 polymeric chains which are formed by more than one particle:

Permutations

- Sampling over all the possible paths and connections
- Care has to be taken to ensure the achievement of equilibrium during the time of a simulation (many atoms involved)

\downarrow

- To take into account correctly the periodic boundary conditions to have always continuous paths

Proposing a pair permutation ...

Atom 2
Initially the two atoms are separated

A staging chain is constructed connecting the bead J of atom 1 with the bead J+m of atom 2

Atom $1+$ Atom 2

A staging chain is constructed connecting the bead J of atom 2 with the bead J+m of atom 1

Efficiency in the permutation sampling

- Over all the trial permutations only 5% are accepted (free-action test) and therefore sampled
- Over all the permutations sampled only 1% are accepted by Metropolis \Longrightarrow Very low efficiency
- The length of the staging chain (joining different particles) is selected for maximizing the ratio of Metropolis-accepted permutations per real time unit
- Permutations involving more than 3 or 4 polymers are extremely difficult to appear, ... but they are important for a correct estimation of the superfluid density

New proposal: Worm Algorithm

Results for bulk ${ }^{4} \mathrm{He}$

ε dependence at $T=0.8 \mathrm{~K}$
Efficiency of Chin action is conserved after symmetrization

Results for bulk ${ }^{4} \mathrm{He}$

Energy as a function of temperature, crossing T_{λ}

Results for bulk ${ }^{4} \mathrm{He}$

Specific heat close to T_{λ}

Results for bulk ${ }^{4} \mathrm{He}$

Two-body radial distribution function

Results for bulk ${ }^{4} \mathrm{He}$

Static structure factor

Results for bulk ${ }^{4} \mathrm{He}$

One-body density matrix $T=2 \mathrm{~K}: n_{0}=5.5 \%$

Small ${ }^{4} \mathrm{He}$ drops

Small ${ }^{4} \mathrm{He}$ drops

$$
N=40
$$

Small ${ }^{4} \mathrm{He}$ drops

$$
N=70
$$

Conclusions

- The action $\left(t_{0}, a_{1}\right)$ has been used for the first time in PIMC and has shown a 6th order efficiency, not only in model problems but in real and more exigent systems (${ }^{4} \mathrm{He}, \mathrm{H}_{2}$)
- With respect to the Takahashi-Imada approximation, the new action does not require any additional derivative of the potential
- Migrating a TIA code to a Chin one is rather easy since the basic routines are the same
- In spite of substituting a bead by three beads, the efficiency of the staging corresponds to the one of a time step ϵ

Conclusions

- Easier, general and with a more clear dependence with ϵ than the pair action approximation (Ceperley)
- The introduction of the worm allows for a better sampling of permutations \Longrightarrow best results for n_{0} and ρ_{s} / ρ
- This is our choice for finite-temperature simulations in quantum fluids ...

Conclusions

- Easier, general and with a more clear dependence with ϵ than the pair action approximation (Ceperley)
- The introduction of the worm allows for a better sampling of permutations \Longrightarrow best results for n_{0} and ρ_{s} / ρ
- This is our choice for finite-temperature simulations in quantum fluids ...

THANKS FOR YOUR ATTENTION !

