Time-evolving block decimation: application to one-dimensional fermions Vesa Apaja Deparment of Physics Nanoscience Center University of Jyväskylä, Finland

Collaboration: Robert vanLeeuwen Petri Myöhänen Adrian Stan Gianluca Stefanucci Matti Manninen

Mikko Leskinen Päivi Törmä

Outline

Matrix Product States and Hubbard model

TEBD algorithm by Guifre Vidal

Time Evolving Block Decimation

Algorithm to optimize MPS; related to DMRG

Local imaginary/real time evolution operator on a MPS and forcing it back to MPS

Applications:

- Measuring pairing gap with RF pulse
- Time dependent quantum transport

Matrix product states

Ordinary many-body state expression in product basis

$$\left|\Psi\right\rangle = \sum_{i_1...i_N} c(i_1...i_N) |i_1...i_N\rangle$$

Single-site basis: $\left\{ - \left. \begin{array}{c} \bullet \\ \bullet \end{array} \right| \left. \left. \begin{array}{c} \bullet \\ \bullet \end{array} \right| \left. \left. \begin{array}{c} \bullet \\ \bullet \end{array} \right| \left. \begin{array}{c} \bullet \\ \bullet \end{array} \right| \left. \left. \left. \begin{array}{c} \bullet \\ \bullet \end{array} \right| \left. \left. \left. \left. \begin{array}{c} \bullet \\ \bullet \end{array} \right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \right| \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left. \right\right| \left. \left. \left. \left. \left.$

Matrix product state (periodic boundaries)

$$|\Psi\rangle = \sum_{i_1...i_N} \operatorname{Tr}(A^{i_1}A^{i_2}...A^{i_N})|i_1...i_N\rangle$$
$$= \sum_{i_1...i_N} A^{i_1}_{\alpha\beta}A^{i_2}_{\beta\gamma}...A^{i_{N-1}}_{\epsilon\delta}A^{i_N}_{\delta\alpha}|i_1...i_N\rangle$$

Any state can be expressed as an MPS if you take big enough matrices (G. Vidal, *Phys. Rev. Lett.* **93**, 040502 (2003))

Systematically better variational wave function with increasing matrix dimension *D Unitary changes to subsystems don't change* the Schmidt decomposition elsewhere => Local updates

 \dot{l}_1

Hubbard Hamiltonian

Hopping between nearest neighbours and on-site repulsion

Apply real/imaginary time evolution to even and odd bonds separately:

MPS \rightarrow local update \rightarrow MPS

Hubbard Hamiltonian couples two nearest neighbor sites

Measuring pairing gap with RF pulse

Chin et al. *Science 305, 1128 (2004)*

"Observation of the Pairing Gap in a Strongly Interacting Fermi Gas"

RF offset (detuning) $\delta = \omega_{RF} - (w_f - w_2)$

0.4 T'/T_= 0.80 0.0 Fractional loss in |2> 0.75 0.4 0.0 0.45 0.4 <0.2 0.4 0.0 20 -20 40 RF offset (kHz)

Fig. 3. RF spectra measured at B = 837 G and $T_{\rm F} = 2.5 \ \mu {\rm K}$ for different temperatures T' adjusted by controlled heating. The solid lines are fits to guide the eye, using a Lorentzian curve for the atom peak and a Gaussian curve for the pair signal. The vertical dotted line marks the atomic transition, and the arrows indicate the effective pairing gap $\Delta \nu$.

Attractive-U Hubbard model,
$$U_{12} < 0, |U_{12}| \sim$$

Barcelona CHIN'09

Т

Relation RF-shift – gap is nonlinear for long pulses

M. J. Leskinen, V. A., J. Kajala, and P. Törmä, Phys. Rev. A 78, 023602 (2008)

24.3.2009

Barcelona CHIN'09

Time-dependent quantum transport

Many-body effects have a large impact on currents

K. S. Thygesen (*Phys.Rev.Lett.* 100 166804 (2008) P. Myöhänen *et al.* (*Europhys. Lett.* 84, 67001 (2008), *cond-mat: arXiv:* 0808.3483 (2008)) Many-body approximations give different transient and steady state currents

For example:

Self-energy approximations: HF = Hartree-Fock 2B = 2nd Born GW = GW

Which one is the best?

Simple model system

On-site repulsion U = 0.5 Hopping t = -1.5 in leads -0.5 between leads and center atoms -1.0 between center atoms

Ground state at constant chemical potential

Barcelona CHIN'09

Thank You!

Hubbard model in 1D

$$\hat{H} = -J\sum_{\langle i,j\rangle} (\hat{a}_i^{\dagger} \hat{a}_j + h.c.) + \sum_i \mu \hat{n}_i + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

Tunnel matrix element : nearest neighbor site-to-site hopping

$$J = J_{ij} = -\int d^3 x w(\mathbf{x} - \mathbf{x}_i) \left(-\frac{\hbar^2}{2m} \nabla^2 + V_{lat}(\mathbf{x}) \right) w(\mathbf{x} - \mathbf{x}_j)$$

On-site interaction matrix element

$$U = \frac{4\pi\hbar^2 a}{m} \int d^3 |w(\mathbf{x})|^4$$

- μ Is the chemical potential
- a is the scattering length

Localized Wannier wave functions

Field operator in Wannier basis

$$\hat{\psi}(\mathbf{x}) = \sum_{i} \hat{a}_{i} w(\mathbf{x} - \mathbf{x}_{i})$$

Barcelona CHIN'09

Current conserving approximations:

