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Formulation of the path integral formalism (1)

e Amplitudes for transition from an initial state |a) to a final
state |3) in time T can be written as

A, 8;T) = (Ble”#17T|a)

o For technical reasons, usually we use imaginary time
@ The standard derivation starts from the identity

A(a767T) :/dq1"'qu1A(057Q1;6)"'A(q1\7176;6)7

dividing the evolution into N steps of the length e = T'/N.
This expression is exact.

o Next step is approximate calculation of short-time
amplitudes up to the first order in €, and we get (h = 1)

1

An(a,3;T) = W/dch edgn_q e

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



o® SCIENTIFIC Effective actions
'.. COMPUTING
¢ LABORATORY

Formulation of the path integral formalism (2)

e Continual amplitude A(a, 3;T) is obtained in the limit
N — oo of the discretized amplitude Ayx(a, 5;7),

o Discretized amplitude Ay is expressed as a multiple
integral of the function eV, where Sy is called
discretized action

e For a theory defined by the Lagrangian L = 3 ¢* + V(q),
(naive) discretized action is given by

N—-1 52
SN = Z <2—z +6V((jn)> )
n=0

_ —  _ gnt1tg
where 6, = ¢ni1 — G, Gn = PEFE
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Numerical approach to the calculation of path
integrals (1)

o Path integral formalism is ideally suited for numerical
approach, with physical quantities defined by discretized
expressions as multiple integrals of the form

/dql cedgy e 5w

e Monte Carlo (MC) is the method of choice for calculation
of such intergals

o However, although multiple integrals can be calculated
very accurately and efficiently by MC, there still remains
the difficult N — oo limit

@ This is what makes the outlined constructive definition of
path integrals difficult to use in practical applications

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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Numerical approach to the calculation of path
integrals (2)

o Discretization used in the definition of path integrals is not
unique; in fact, the choice of the discretization is of
essential importance

e Naive discretized action (in the mid-point prescription)
gives discretized amplitudes converging to the continuum
as slow as 1/N

e Using special tricks we can get better convergence (e.g. left
prescription gives 1/N? convergence when partition
function is calculated)

o However, this cannot be done in a systematic way, nor it

can be used in all cases (e.g. left prescription cannot be
used for systems with ordering ambiguities)
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Discretized effective actions (1)

@ Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
values

o It is possible to introduce different discretized actions
which contain some additional terms compared to the naive
discretized action

@ These additional terms must vanish in the N — oo limit,
and should not change continuum values of amplitudes, e.g.

N-1

> Vi) — / " arv(an) 0
" 0

n=0

o Additional terms in discretized actions are chosen so that
they speed up the convergence of path integrals
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Discretized effective actions (2)

o Improved discretized actions have been earlier constructed
through several approaches, including
e generalizations of the Trotter-Suzuki formula
e improvements in the short-time propagation
e expansion of the propagator by the number of derivatives
o This improved the convergence of general path integrals for
partition functions from 1/N to 1/N*

o Li-Broughton effective potential

1
VEB =V 4 V7.
+ 24
in the left prescription gives 1/N* convergence
@ Derivation of the above expression makes use of the cyclic
property of the trace - the improvement is valid for

partition functions only
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al discretization (1)

o Ideal discretized action S* is defined as the action giving
exact continual amplitudes Ay = A for any discretization

o For the free particle, the naive discretized action is ideal

o From the completeness relation

A(Oé,,@,T) - /dq1 e qu71 A(a7Q17 6) e A(szfl?ﬂ; 6) )
it follows that the ideal discretized action S} for the
propagation time € is given by

1
A(Qm dn+1; 6) = \/ﬁ

o Ideal discretized action S* is the sum of terms S},

e Sn
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Ideal discretization (2)

o In general case, the ideal discretized action can be written

as
L%
Sn:2—6—|—€Wn,

where W is the effective potential which contains V(gy,)
and corrections

o From the definition of the ideal discretized action it follows
Wy = W(dna an; 6)

o From the reality of imaginary-time amplitudes, i.e. from
the hermiticity of real-time amplitudes we obtain

W((Sna Gn; 6) = W(_(Sna Gn; 6)
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Improving effective actions (1)

@ We present an approach enabling a substantial speedup in
the convergence of path integrals

o Previously we have set up an approach based on the
integral equation connecting discretized effective actions of
different coarseness

o It allows the systematic derivation of effective actions and
leadis to improved 1/NP convergence for one-particle
systems in d = 1 - Gaussian halving

o For many-body systems in arbitrary dimensions we have
developed two equivalent approaches

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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Improving effective actions (2)

e First is based on direct calculation of e-expansion of
short-time amplitudes, expressed as expectation values of
the corresponding free theory

o following the original idea from the book by H. Kleinert

e Here we present second approach, based on solving
recursive relations for the discretized action, derived from
Schrédinger’s equation for amplitudes.

o This approach is by far the most efficient, both for
many-body and one-body systems.

o The presented results are highly related to recently
developed systematic approach by Chin and collaborators
for the arbitrary-order splitting of the evolution operator

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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Equation for the ideal effective potential (1)

o We start from Schriodinger’s equation for the amplitude
A(q,q';€) for a system of M non-relativistic particles in d
spatial dimensions

M
[%—% ZAH—V(Q)

=1
M
g 1
[a ~3 D LI+ V()
i

e Here A; and A are d-dimensional Laplacians over initial
and final coordinates of the particle 7, while ¢ and ¢’ are
d x M dimensional vectors representing positions of all
particles at the initial and final time.

A(g,qd'5e) = 0

Alg,qd5¢) = 0
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Equation for the ideal effective potential (2)

o If we express short-time amplitude A(q, ¢’; €) by the ideal
discretized effective potential W

b 1 52
Alq,q'5€) = WEXP o —eW

we obtain equation for the effective potential in terms of
$:5/27 T = (Q+q1)/27 Vi :V(Zf'ﬂ:l‘)

W+ 8W—|—686 868W 868W+86(3W)+
+é62(8W)2=¥
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Recursive relations (1)

o The effective potential is given as a power series

W(z,z;€) = i i Woni(2,2) ™5

m=0 k=0

where systematics in e-expansion is ensured by € o 22, and
S W U102k (5
Wm,k($a :1:) = Tiy Liy xl2kcm’k (SL')

o Coefficients W, ;. are obtained from recursive relations

8(m+k+1) Wm k=0 W1+ Wi joy1—

_Z Z aVVlr 8Wm 1—2,k— r)
_Zzamflr 8Wml 1,k— 7"+1)

=1
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Recursive relations

o Diagonal coeflicients are easily obtained from recursive
relations

(2m+1)
e Off-diagonal coefficients are obtained by applying recursive
relations in the following order

0| @]

1| «lo]

2| 10O

3| 4+
<<

m @)
0 1 2 3 k
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Effective action for many-body systems (1)

e To level p = 3, the effective potential is given by

Woo = V
Wl,l = %(.ﬁlfé)QV
I 2

Wio = 1—28V

_ 1 a4
W272 = 120 (J} 6) V

_ 1 N2 72
W271 = 120(33 8) 8 Vv
Way = — o'V — (V) - (V)

207 940 24
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Effective action for many-body systems (2)

» 16,6,
Sz(vp ) = Z{E (5 €2

2 636,
+ 6—8,3 WV SOV
_ 4 € 55; 4 €5i5j5k51 4
8V8V+2408”“ 480 aﬂkkv 1920 OtV
4
- _ 6_ Vo3 2 2
+ 672081 z,j,],k,kv azva 7kyk‘/ 3608 V(?
€ 6 (;J € 6 5] 6 € (5 (Sj 2
180 OV OasV + gpgg itV — g OV OEsV
€26;0,;0101 6 €8;0:050;0m0
Z V) TREE A6 V 7] men 6 V
T 3760 Ceikbmm? T T a00s60  Ciikibmn
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Exact diagonalization

Space-discretized Hamiltonian (1)

e Coordinate representation of the time-independent
Schrédinger’s equation

/ dy (x| B |y) (yl) = E (z])

o Numerical implementation of the exact diagonalization:
continuous coordinates x replaced by a discrete space grid
T, = nA

o To represent this on a computer, we still have to restrict
the integers n to a finite range, which is equivalent to
introducing a space cutoff L, or putting the system in a
infinitely high potential box

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



SCIENTIFIC
COMPUTING
LABORATORY

Exact diagonalization

Space-discretized Hamiltonian (2)

o For example, the rectangular quadrature rule leads to the
following space-discretized Schrodinger equation

N-1
> Hum(mAl) = E(A, L) (nAlg)
m=—N
where Hym = A - (nA|H|mA), N = [L/A]
o As a result, we have obtained a 2N x 2N matrix that
represents the Hamiltonian of the system
@ The eigenvalues of this matrix depend on the two
parameters introduced in the above discretization process:
cutoff L and discretization step A

o Continuous physical quantities are recovered in the limit
L—ococand A —0

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



SCIENTIFIC
COMPUTING
¢ LABORATORY

Exact diagonalization

Space-discretized Hamiltonian (3)

@ The two approximations (A, L) involved in the
discretization procedure are common steps in solving
eigenproblems of Hamiltonians

@ The system is effectively surrounded by an infinitely high
wall, and as the cutoff L tends to infinity, we approach the
exact energy levels always from above, which is a typical
variational behavior

o The effects of the discretization step A are much more
complex, and follow from the fact that the kinetic energy
operator cannot be exactly represented on finite real-space
grids

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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L) Exact diagonalization

Space-discretized evolution operator

o Here we instead use the approach of diagonalization of the
space-discretized evolution operator, introduced first by
Sethia et al. [J. Chem. Phys. 93 (1990) 7268|

N-1
D Apm(t) (mAp) = e PFALD (nAy)
m=—N

where A, (t) = A - A(nA, mA;t) = A - (nAle " |mA)

o In this approach the time of evolution ¢ plays the role of an
auxiliary parameter which is not related to the
discretization, but numerically calculated eigenvalues and
eigenstates will necessarily depend on it

@ We also carefully study the errors associated with the
discretization and numerical diagonalization

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



SCIENTIFIC Discretization approach
Exact diagonalization iscreti r
COMPUTING
¢ LABORATORY

Errors due to the spacing A (1)

e Using the Poisson summation formula we find that the
space discretized free-particle amplitude satisfies

o272
ZAnm Ze A2”t~1+2exp( A2t)

nel nel

o This leads to discretization errors for energy eigenvalues

1 27
Ek(A, L,t) — Ek ~ —2 exp (—§t>

@ Note that the effect of discretization is non-perturbative in
discretization step A, i.e. it is smaller than any power of A

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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|Eo(A, L,t) — Ep| for a free particle in a box as a function of A
for different values of time of evolution ¢ and L = 6.
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|Ex(A, L, t) — Ey| for a free particle in a box as a function of ¢
for several energy levels k. The parameters used are L = 6,
A =0.2.
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|Eo(A, L,t) — Ep| for a harmonic oscillator as a function of A
for different values of time of evolution ¢, with L =12, w =1,
M =1.
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|Ex(A, L, t) — Eg| for a harmonic oscillator as a function of ¢ for
several energy levels k. The parameters used are L = 12,
A=01l,w=1 M=1.
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Errors due to the space-cutoff L (1)

o The effects of space cutoffs are known for continuous-space
theories. The shift in energy level E(L) — E) is found to
be positive

Ell) = B = Cila) (/L w;ix»?)_l ’

where a is larger than and well away from the largest zero
of Y, (x), but smaller than and well away from the space
cutoft L

e The constant C(a) depends on the normalization of
eigenfunction and the choice of parameter a. For the
ground state we can always choose a = 0, so that

a0 =/ LL s |¢0<x>12)_1

L) Exact diagonalization

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



® SCIENTIFIC
'.. COMPUTING
¢ LABORATORY

Errors due to the space-cutoff L (2)

o When we use diagonalization of the discretized amplitudes,
the errors in energy level will necessarily also depend on
the parameter ¢ and other discretization parameters

o A simple estimate of ground energy errors follows from the
spectral decomposition of diagonal amplitudes

o For large t we have A(x,x;t) = |o(x)|?e~F0l. Integrating
this we find an approximate result for Fy for a system with
cutoff L

L) Exact diagonalization

1 L
Eo(L,t) ~ 5 ln/ dz A(z, x;t)
-L
In the L — oo limit we recover the exact ground energy, so
that a simple estimate of finite size effects on Ey is given by

Eo(L.t) — By~ /| el

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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Evolution-time errors (1)

o The precise calculation of transition amplitudes is essential
for applications of this method

o In papers by Sethia et al. all calculations are based on the
naive approximation for amplitudes

1 (z—y)* Tty
AWM B e tV(Y)
('/’U’y’ ) (27Tt)d/2 € ¢
o We use effective action approach, which gives closed-form
analytic expressions A®)(z,y;t) for short-time transition

Exact diagonalization

amplitudes,
AP (2, ;1) = Az, y5t) + O(t7)

o If p is high enough and time of evolution is less than the
radius of convergence of the e-expansion, errors in
calculated transition amplitudes are negligible

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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L) Exact diagonalization

Energy eigenvalues and eigenstates in d =1 (1)

whb_ bt AnnAnn | 1°
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The quartic anharmonic potential, its energy eigenvalues
(horizontal lines) and eigenfunctions i (x) for k£ = 0,9, 15, 20,
with the parameters p =21, M =w=1,9g=48, L =8,
A=9.76-10"%, ¢t = 0.02.
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Exact diagonalization

Energy eigenvalues and eigenstates in d =1 (2)
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The double—well potential, its energy elgenvalues (horlzontal

lines) and eigenfunctions ¥y (z) for k =0,1,2,3,4,5,6,7, with
the parameters M = —10, w =1, g =12, L = 10,
A=122-1073,t=0.1.
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nergy eigenvalues and eigenstates in d =1 (4)
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Rotating ideal Bose gases (1)

Good approximation for weakly-interacting dilute gases

o Bose-Einstein condensates usually realized in harmonic
magneto-optical traps

o Fast-rotating Bose-Einstein condensates extensively studied
- one of the hallmarks of a superfluid is its response to
rotation

e Paris group (J. Dalibard) has recently realized critically
rotating BEC of 3 - 10° atoms of 8’Rb in an axially
symmetric trap - we model this experiment

@ The small quartic anharmonicity in « — y plane was used to

keep the condensate trapped even at the critical rotation
frequency [PRL 92, 050403 (2004)]

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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Rotating ideal Bose gases (2)

o We apply the developed discretized effective approach to
the study of properties of such (fast-rotating)
Bose-Einstein condensates

o We calculate large number of energy eigenvalues and
eigenvectors of one-particle states

@ We numerically study global properties of the condensate

o T, as a function of rotation frequency 2
o ground state occupancy No/N as a function of temperature

@ We calculate density profile of the condensate and
time-of-flight absorption graphs
e Vppc = M(u)l Q?)r? + ]\24 2224 & 5, UJJ_ =27 x 64.8

Hz, w, =27 x 11.0 Hz, k = 2.6 x 10~ ot Jm—*

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions
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Condensation temperature
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Number of particles as a function of T, [nK] for different
rotation frequencies, obtained with p = 18 effective action.
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Ground-state occupancy No/N as a function of T/T for
different rotation frequencies, obtained with p = 18 effective
action (T? = 110 nK used as a typical scale in all cases).
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Density profiles of Bose-Einstein condensates (1)

o Density profile is given in terms of the two-point
propagator p(7,7) = (W1 (7 )W (7)) as a diagonal element,
n(r) = p(7,7)

o For the ideal Bose gas, the density profile can be written as

n() = Nolto(F)* + Y Naltp (7|
n>1
where the second term represents thermal density profile

e Vectors v, represent single-particle eigenstates, while
occupancies IV, are given by the Bose-Einstein distribution
forn>1,
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Density profiles of Bose-Einstein condensates (2)

e Using the cumulant expansion of occupancies and spectral
decomposition of amplitudes, the density profile can be
also written as

n(7) = Nolto(F)? + Y [0 A(, 037, mOR) — ()
m>1
where A(7,0; 7, mfh) represents the (imaginary-time)
amplitude for one-particle transition from the position # in
t = 0 to the position 7 in t = mGh
o Both definitions are mathematically equivalent

o The first one is more suitable for low temperatures, while
the second one is suitable for mid-range temperatures
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Time-of-flight graphs for BECs (1)

o In typical BEC experiments, a trapping potential is
switched off and gas is allowed to expand freely during a
short time of flight ¢ (of the order of 10 ms)

@ The absorption picture is then taken, and it maps the
density profile to the plane perpendicular to the laser beam

e For the ideal Bose condensate, the density profile after time
t is given by

n(7,t) = Nolvo(7, 1) > + Y Nalvon(7, 1)
n>1
where

} CEPE i i,
Un(7,1) :/W kTR Ry (R)
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Time-of-flight graphs for BECs (2)

o For mid-range temperatures we can use mathematically
equivalent definition of the density profile

n(Fv t) = N0|¢0(Fa t)’2 + Z

m>1

s / A3k; d3ky B3Ry d3 Ry
(2m)°

e—i(‘%l _“’E2)t+i(/_51—/;2)'77—i1;1~ﬁ1+i52~ﬁ2 A(ﬁl,o; ﬁg,mﬂh) — o (7, t)’Z

o In both approaches it is first necessary to calculate Ey and
¥o(7) using direct diagonalization or some other method

o FFT is ideally suitable for numerical calculations of
time-of-flight graphs
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Time-of-flight graphs for BECs (3)

(Loading diag-d025-L400-r09eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at under-critical rotation Q/w; = 0.9, T' = 10
nK < 7T, = 76.8 nK. The linear size of the profile is 54 pm.
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Time-of-flight graphs for BECs (4)

(Loading diag-d025-L400-r10eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at critical rotation Q/w; =1, T'= 10 nK
< T, = 63.3 nK. The linear size of the profile is 54 pm.
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Time-of-flight graphs for BECs (5)

(Loading diag-d025-L400-r105eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at over-critical rotation Q/w; = 1.05, T = 10
nK < T, = 55.3 nK. The linear size of the profile is 54 pm.
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Conclusions (1)

New method for numerical calculation of path integrals for
a general non-relativistic many-body quantum theory

Derived discretized effective actions allow deeper analytical
understanding of the path integral formalism

o In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/N?P

For single-particle one-dimensional theories we have derived
discretized actions up to level p = 35, while for a general
non-relativistic many-body theory up to level p = 10
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Conclusions (2)

o For special cases of potentials we have derived effective
actions to higher levels (p = 140 for a quartic anharmonic
oscillator in d =1, p =67 in d = 2, p = 37 for modified
Poschl-Teller potential)

e We have developed MC codes that implement the newly
introduced approaches, as well as Mathematica codes for
automation of symbolic derivation of discretized effective
actions

@ The derived results used to study properties of quantum
systems by numerical diagonalization of the space-
discretized evolution operator

o Numerical study of properties of (fast-rotating) ideal
Bose-Einstein condensates

e Condensation temperature and ground-state occupancy
o Density profiles and time-of-flight graphs
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ther applications

Properties of interacting Bose-Einstein condensates

o Effective actions for time-dependent potentials
o Gross-Pitaevskii (mean field) equation

Ground states of low-dimensional quantum systems

Quantum gases with disorder (Anderson localization)

Improved estimators for expectations values (heat capacity,
magnetization etc.)

Antun Bal Recursive Approach to the Calculation of Improved Effective Actions



SCIENTIFIC
® o COMPUTING
¢ LABORATORY Concluding remarks

Support

o National research project “Numerical Simulations of
Complex Systems in Physics (OI141035)”, funded by
Serbian Ministry of Science

o Centre of Excellence for Computational Modeling of
Complex Systems (CX-CMCS) FP6 grant awarded to SCL,
Institute of Physics Belgrade

o Bilateral research project “Fast Converging Path Integral
Approach to Bose-Einstein Condensation (PI-BEC)”,
funded by German Academic Exchange Service (DAAD)
and Serbian Ministry of Science

o Equipment grants for computing resources from Serbian
National Investment Plan

e We acknowledge use of research elnfrastructures provided
by FP7 projects EGEE-III and SEE-GRID-SCI

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



SCIENTIFIC
%, COMPUTING
* LABORATORY Concluding remarks

References

A. Bogojevi¢, A. Balaz, A. Beli¢, PRL 94, 180403 (2005)

A. Bogojevié, A. Balaz, A. Beli¢, PLA 344, 84 (2005)

A. Bogojevié, A. Balaz, A. Beli¢, PRB 72, 064302 (2005)

A. Bogojevi¢, A. Balaz, A. Beli¢, PRE 72, 036128 (2005)

D. Stojiljkovié, A. Bogojevié, A. Balaz, PLA 360, 205 (2006)
o J. Grujié, A. Bogojevié¢, A. Balaz, PLA 360, 217 (2006)

@ A. Bogojevié, I. Vidanovi¢, A. Balaz, A. Beli¢, PLA 372, 3341
(2008)

@ A. Balaz, A. Bogojevi¢, I. Vidanovié¢, A. Pelster, PRE 79,
036701 (2009)

Antun Balaz: Recursive Approach to the Calculation of Improved Effective Actions



	Effective actions
	Introduction
	Discretized effective actions
	Recursive approach
	Effective action for many-body systems

	Exact diagonalization
	Discretization approach
	Space-discretization errors
	Evolution-time errors
	Energy eigenvalues and eigenstates

	Application to BECs
	Rotating ideal Bose gases
	Calculation of global properties
	Time-of-flight graphs

	Concluding remarks
	Conclusions
	Further applications
	Support
	References


